단일 카메라를 통하여 실시간으로 입력되는 객체의 추적은 환경의 제약을 많이 받는다. 입력되는 영상에서의 움직임이 있는 객체는 단일하여야 하며, 동시에 많은 움직임이 발생하면 추적하고자 하는 객체를 구분하기 어려워진다. 본 논문에서는 동일공간을 감시하는 두 대의 카메라가 서로 데이터를 주고 받으며 추적하고자 하는 특정객체를 오류 없이 추적할 수 있는 방법을 제시하였다. 실시간 객체 추적은 입력되는 영상에서 객체의 위치를 가장 빠르게 검색하기 위한 고속탐색 알고리즘이 필요하다. 본 논문은 실시간영상에서 객체의 움직임을 추출하고 추적을 위하여 각각 위치가 다른 두 대의 카메라가 상호 협력하면서 객체 추적에 대한 연산을 현저하게 줄일 수 있었다. 또한 객체의 움직임이 많은 공간에서도 추적하고자 하는 특정객체를 잃어버리지 않고 추적하였다. 실험결과, 제안한 방법은 97% 이상의 높은 객체 추적율을 보였다.
단일 카메라를 통하여 실시간으로 입력되는 객체의 추적은 환경의 제약을 많이 받는다. 입력되는 영상에서의 움직임이 있는 객체는 단일하여야 하며, 동시에 많은 움직임이 발생하면 추적하고자 하는 객체를 구분하기 어려워진다. 본 논문에서는 동일공간을 감시하는 두 대의 카메라가 서로 데이터를 주고 받으며 추적하고자 하는 특정객체를 오류 없이 추적할 수 있는 방법을 제시하였다. 실시간 객체 추적은 입력되는 영상에서 객체의 위치를 가장 빠르게 검색하기 위한 고속탐색 알고리즘이 필요하다. 본 논문은 실시간영상에서 객체의 움직임을 추출하고 추적을 위하여 각각 위치가 다른 두 대의 카메라가 상호 협력하면서 객체 추적에 대한 연산을 현저하게 줄일 수 있었다. 또한 객체의 움직임이 많은 공간에서도 추적하고자 하는 특정객체를 잃어버리지 않고 추적하였다. 실험결과, 제안한 방법은 97% 이상의 높은 객체 추적율을 보였다.
객체를 추적하는 기술은 컴퓨터 비전 분야에서 활발히 연구되고 있는 분야 중 하나이다. 그 중 고정된 단일 카메라를 이용한 객체 추적 기술은 비디오 감시(Surveillance) 등에서 활용되고 있다. 고정된 카메라 환경에서 객체를 추적하는 방법 중 배경 모델링(Background Modeling)을 이용한 방법은 간단하면서도 널리 사용되는 방법 중 하나이다. 객체의 움직임이나 특징을 분석하여 배경 모델을 생성한 후 배경 정보를 이용하여 전경을 분리하면 쉽게 객체를 추출할 수 있다. 그러나 객체의 움직임이 적은 경우 해당 영역에서의 배경 모델은 정확하게 생성될 수 없다. 배경 모델을 학습하는 동안 객체가 충분이 움직이면 이런 문제를 해결할 수 있으나 객체가 움직이기 전까지는 오류가 지속된다. 이런 문제를 해결하기 위해 본 논문에서는 인페인팅(Inpainting)을 이용하여 움직임이 적은 영역을 보정하여 정확한 배경 모델을 생성하는 방법을 제안한다. 배경 모델을 생성한 후 객체로 식별할 수 있는 후보 영역을 식별한다. 선정된 영역들 중 사용자가 객체로 판단되는 영역을 선택하여 해당 영역에 대해 인페인팅으로 화소값 및 가중치들을 보정한다. 보정된 영상으로 배경 모델링을 수행하면 움직임이 적은 영역에 대해서도 효과적으로 배경 모델을 생성 할 수 있다.
본 논문에서는 컬러 영상에서 추정된 움직임 벡터를 이용하여 움직이는 객체와 움직이지 않는 객체로 영상을 분리하여 깊이 영상의 시간적 일관성을 보상하는 기법을 제안한다. 제안하는 기법에서는 광류(optical flow) 추정 기법을 이용하여 연속되는 컬러 영상의 움직임 벡터를 추정하고 초기 움직임 객체 영역을 생성한다. 이를 바탕으로 그랩컷(grabcut) 기법을 통해 움직임이 있는 객체와 움직임이 없는 객체 영역을 분리한다. 그리고 움직임이 없는 객체 영역의 깊이 값을 이전 프레임의 깊이 지도와 정합 창 기반 절대평균오차(sum of absolute differences)를 통해 비교하여 일정 임계값보다 클 경우 이전 프레임의 깊이 값으로 현재 프레임의 깊이 값을 대체함으로써 시간적 상관성을 보상한다. 움직임이 있는 객체 영역의 경우 시간 축으로 확장된 결합형 양방향 필터링을 수행하여 시간적 상관성을 보상한다. 제안하는 기법으로 보상된 깊이 지도를 이용하여 가상 시점을 합성할 시 화질 향상 뿐 아니라 최근 표준화가 진행 중인 HEVC에서도 부호화 효율 또한 증가한다는 것을 실험을 통하여 확인하였다.
기존의 객체 감지 센서로는 적외선 센서와 초음파 센서, 레이저 센서 등이 있다. 적외선 센서는 가격이 저렴하고 구현이 쉬워 가장 많이 사용되지만, 객체가 움직임이 있을 때에만 감지가 가능한 단점이 있다. 또한 초음파 센서는 움직임이 없어도 감지가 되지만 정확도가 떨어지고 오류가 많은 단점이 있다. 이러한 감지 센서들은 일정 짧은 거리 내의 객체 감지는 가능하지만 탐지범위를 벗어나면 감지가 되지 않는다. 또한 객체 감지를 하여도 객체의 종류가 어떤 것인지 사용자가 알기 힘들다. 본 논문에서는 레이더 센서와 카메라를 활용한 객체 감지 시스템을 설계하였다. 제시하고 있는 시스템은 레이더 센서를 이용하여 객체를 1차적으로 감지한다. 1차적으로 객체가 감지되었으면 2차적으로 감지 당시 카메라의 화면을 별도로 캡쳐하여 객체의 이미지를 저장한다.
비디오 시퀀스에서 움직임 있는 객체의 실시간 검출 및 추적은 스마트 감시 시스템에서 매우 중요한 요소로 분류되고 있다. 본 논문에서 우리는 움직임이 있는 객체의 검출을 위해 클라우지우스 엔트로피와 적응적 가우시안 혼합모델을 사용한 객체 검출 방법을 제안한다. 먼저, 엔트로피의 증가는 일반적으로 불안전한 조건에서 많은 엔트로피의 변화가 발생한 경우 복잡성 및 객체의 움직임이 증가함을 의미한다. 만약 순간적으로 엔트로피 변화가 큰 화소는 움직임 객체에 속한다고 고려하여 움직임 분할 특성을 적용한다. 따라서 우리는 먼저 클라우지우스 엔트로피 이론을 적용하여 엔트로피에 대한 에너지 변화량을 dense 맵으로 변환한다. 두 번째로 우리는 움직임 객체를 검출하기 위해 적응적 가우시안 혼합 모델을 적용하였다. 실험 결과에서 제안된 방법이 효율적으로 움직임이 있는 객체를 검출할 수 있었다.
기존의 객체 추출 및 추적 기법은 외형 변화가 없는 객체를 대상으로 하거나 배경이 고정된 영상만을 고려하였다 본 논문에서는 영역의 색상과 움직임 정보, 그리고 인접한 영역의 상관 관계를 고려한 Markov Random Field (MRF) 모델을 제안한다. MRF 모델은 영상의 시간적 공간적 상관성을 기반으로 최적의 레이블 셋을 계산함으로써 보다 정확하게 객체를 추출 및 추적할 수 있다. 또한, 블록 기반 움직임 추출 알고리즘인 Diamond Search (DS)를 분할된 영역에 적용하여 빠르게 영역의 움직임과 전역 움직임을 추정하였다. 실험 결과 제안한 방법이 객체의 외형 변화와 카메라 움직임이 있는 동영상에서 빠른 속도로 정확하게 객체를 추출 및 추적하는 것을 확인하였다.
객체의 인식을 위한 컴퓨터 비전 알고리즘은 안개와 비와 같은 기상이 좋지 않은 상황에서는 인식 성능이 떨어지고 있다. 이로 인하여 최근 악천후 환경에서 촬영된 영상으로부터 날씨 현상을 제거하는 기법들이 연구되고 있다. 빗줄기는 시공간적 무작위성으로 인하여 검출 및 제거가 어려운 현상이다. 또한 기존의 빗줄기 검출 및 제거 기법들은 대부분 고정된 카메라로부터 촬영된 영상을 대상으로 처리함으로써 자동차와 같은 움직임이 있는 촬영환경에서는 부적합하다. 최근에는 카메라나 객체의 움직임에 대응할 수 있는 빗줄기 검출 및 제거 알고리즘이 개발되고 있으나, 방대한 연산량이 필요하기 때문에 실시간이 불가능하다. 본 논문에서는 최근 연구되고 있는 카메라 움직임이 있는 환경에서 빗줄기 검출 및 제거 알고리즘을 DSP 환경에서 구현하고 내부 메모리 최적화와 EMDA 이용, 소프트웨어 파이프라인 등을 통해 최적화를 수행하여 실시간성을 보인다.
본 논문에서는 YOLO v3 라이브러리를 이용하여 CCTV 저장 공간을 확보하는 모델을 제안한다. 사회안전망을 구축하기 위해 CCTV 설치가 확대되고, 그에 따라 많은 CCTV가 운영됨에 있어 저장 공간이 부족한 현상이 늘고 있다. 이에 본 논문에서는 학습된 데이터 셋을 활용하여 CCTV 영상파일의 프레임을 확인하여 움직임이 있는 객체가 있는지 판단하고, 움직임이 감지되는 프레임 영상을 저장한다. 제안 모델을 적용하여 테스트 한 결과 원본 데이터 크기보다 결과 데이터 크기가 85% 감소됨을 확인하였다. 인적이 드문 곳에 설치된 CCTV의 경우 제안 모델을 적용할 경우, 저장 공간의 관리 및 운영이 용이해질 것으로 기대할 수 있다.
본 논문에서는 기존의 화소값 차영상 기법이 저속으로 움직이는 물체의 동작정보 감지에 취약한 점을 보완하기 위하여 실시간 영상 처리를 목적으로 연속된 프레임(Frame)에서 움직임이 있는 프레임을 찾아내고, 움직임 영역을 추출하는 움직임 검출에 관한 연구를 통해 웹캠 기반의 객체 감지시스템을 제안하였다. 제안 시스템은 단일 객체뿐 아니라 다중 객체의 움직임까지 파악할 수 있다는 장점을 가지고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.