• Title/Summary/Keyword: 운행차 배출가스 검사제도

Search Result 4, Processing Time 0.024 seconds

Identifying Key Factors to Affect Vehicle Inspection and Maintenance(I/M) Test Results Using a Binary Logit Model (California Case Study) (이항로짓모형을 이용한 자동차 배출가스 검사결과에 미치는 요인분석(미국 캘리포니아 사례를 중심으로))

  • Chu, Sang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.189-195
    • /
    • 2006
  • For the past decades, vehicle emissions has been a major source of air pollution in urban areas Vehicle inspection and maintenance (I/M) test programs were developed for major metropolitan areas to reduce urban air pollution. However. there are a few studies of exploring major factors to influence I/M test failure. This study develops a logit model to identify key factors affecting overall test failure, using the vehicle I/M test data from California in October 2002. The model results indicate that vehicle age, odometer reading, engine size, vehicle make, presences of emissions control equipment, and test types have significant effects on the probability of I/M test failure.

환경정보 - 2010년 하반기부터 달라지는 주요 환경제도

  • 환경보전협회 편집부
    • Bulletin of Korea Environmental Preservation Association
    • /
    • s.388
    • /
    • pp.22-24
    • /
    • 2010
  • 운행차 배출가스 검사방법 및 배출허용기준 개선, 가정부문 탄소포인트제 확대, 음식물 쓰레기 종량제 시행 등 2010년 7월부터 달라지거나 새롭게 시행되는 주요 환경행정 내용을 정리하였으니 참고하시기 바랍니다.

  • PDF

Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine (전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구)

  • Kang, Hyun-Jun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.196-205
    • /
    • 2016
  • The exhaust gas discharged by cars not only threatens the health of the human body, but also contributes to global warming, due to the resulting increase in the concentrations of ozone, fine dust and carbon dioxide. Therefore, the government has steadily implemented careful inspection systems for exhaust emissions, in order to efficiently regulate the exhaust gas of cars. Studies on reducing the exhaust emissions of automobiles have been conducted in various fields, including ones designed to reduce the generation of HC, NOx, and $CO_2$ in the exhaust emission of vehicles. However, there have been insufficient studies on the reduction of the exhaust emission for old diesel vehicles. To develop careful inspection systems for the exhaust emissions of old diesel vehicles, studies on the reduction of the exhaust emissions and improvement of power are necessary by cleaning the carbon sediment in both the intake manifold and injector. Therefore, in this study, we analyzed and compared the amounts of gas emitted when simultaneously cleaning or not cleaning the intake manifold and injector of diesel automobiles with mileages over 80,000 km and operating periods over 5 years. The experimental results showed that in the case where the intake manifold and injector were simultaneously cleaned, there was a decline of 75.2% in the gas emission compared to the cases where only the manifold or injector is cleaned. Also, it was found that simultaneously cleansing the intake manifold and injector enabled the exhaust standard to be satisfied for less than 30% within 8.5 sec.

Study of Emission Characteristics of Commercial Vehicles Using PEMS (PEMS 적용에 따른 상용차 배출가스 특성)

  • Eom, Myungdo;Park, Junhong;Baik, Doosung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.657-663
    • /
    • 2014
  • Since 2007, the defect confirmation test for vehicles using PEMS has been enforced in USA. This test can measure emissions from on-street vehicles using a device mounted on a car. Europe has confirmed its plan for introducing this test from EURO6, 2013. Thus, the Korean government is also under pressure to adopt this method that reflects the real-world driving conditions using PEMS, considering the emission controls for domestic heavy-duty vehicles. To provide various utilizations of the PEM, this emission test has been developed in accordance with the type of driving road, DPF, ISG, and air conditioner. This research aims to provide the fundamental materials for implementing defect confirmation tests for commercial vehicles, which are appropriate for domestic emission control situations, after studying the defect confirmation test methods for heavy-duty vehicles using PEMS.