• 제목/요약/키워드: 운항 자세

검색결과 55건 처리시간 0.02초

선박 검사 수중 드론 개발 Part 2: 모니터링 시스템 및 운용 (Underwater Drone Development for Ship Inspection Part 2: Monitoring System and Operation)

  • 하연철;김진우;김구;정경택;최현덕
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.133-141
    • /
    • 2020
  • 본 논문에서는 수중 드론이 받아들이는 데이터 정보의 통신 방식과 데이터 정보의 콘솔 디스플레이로의 구현 방식에 관해 기술하였으며, 통합 모니터링 시스템 인터페이스의 기능과 음파 탐지기 인터페이스 설계 및 구현에 대하여 설명하였다. 콘솔과 연결된 컨트롤러를 이용해 수중 드론의 운항 및 자세를 제어할 수 있도록 하였고, 수중 드론과 장애물 사이의 거리 정보를 음파 탐지기로부터 획득하여 카메라 영상과 함께 콘솔 화면에 시각적으로 표시할 수 있도록 제작하였다. 통합 모니터링 내비게이션 콘솔은 개선사항에 맞게 구현하여 작업자가 편리하고 쉽게 이용할 수 있다. 또한 통합 모니터링과 제어 소프트웨어 기능 고도화를 통해 사용자별 프로젝트 관리 기능과 선저 검사용 보고서 출력 기능을 추가하여 다른 수중 드론과는 차별성과 경쟁력 있게 제작하였다.

GPS/INS 통합시스템의 측정치 시간지연오차 보상 (Measurement Delay Error Compensation for GPS/INS Integrated System)

  • 유준;임유철
    • 전자공학회논문지SC
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2004
  • INS는 위치, 속도 및 자세정보를 고속으로 제공하며 스스로 항법정보를 제공하는 장점이 있으나 오차가 시간에 따라 증가하는 단점이 있다. 반면에 GPS는 데이터를 저속으로 제공하며 재밍(Jamming)에 영향을 쉽게 받으나 오차가 시간에 상관없이 일정하다는 장점이 있다. 따라서 상호보완적인 특성을 가지는 INS와 GPS를 통합하였을 때 더욱더 정확한 항법해를 제공할 수 있다. 그러나 INS와 GPS를 통합하는 과정에서 INS정보와 GPS정보의 정확한 시각적 동기가 어려우며, 시각적 비동기에 의한 오차는 일정한 측정오차를 유발하며 고속으로 운항하는 경우에는 큰 영향을 미치게 된다. 본 연구는 GPS/INS 통합항법 시스템에서 측정치 시간지연에 의해 유발되는 오차를 효과적으로 줄이기 위해 바이어스 분리형 칼만필터를 이용한 시간지연오차 보상기법을 강결합 방식과 약결합 방식에 대하여 각각 제안하였다. 각각의 통합모델에서 위치와 속도보정의 측정방정식을 지연시간에 관하여 선형화하였고 지연 상태변수를 기존의 선형 오차방정식에 추가하고 바이어스 분리형 칼만필터를 적용하여 시간지연을 초기에 추정하여 보상하도록 구성하였으며 시뮬레이션을 통하여 성능을 검증하였다.

수중 운반체 위치 추정 센서의 측정 시뮬레이션 (Simulation of Sensor Measurements for Location Estimation of an Underwater Vehicle)

  • 한준희;고낙용;최현택;이종무
    • 한국지능시스템학회논문지
    • /
    • 제26권3호
    • /
    • pp.208-217
    • /
    • 2016
  • 본 논문은 수중 운반체의 위치추정을 위해 사용되는 센서들의 시뮬레이션에 의한 측정값 생성 방법을 기술한다. 수중 로봇의 경우 항법의 실제 운항 실험에 많은 시간과 경비가 소요되며, 다양한 조건에서의 알고리즘 검증을 위해 실험 조건을 임의로 변화시키기 어렵다. 따라서 수중 항법의 시험 검사를 위해서는 실제 환경에서의 실험 전에 시뮬레이션을 통한 성능의 검증이 필수적이다. 본 연구에서는 거리 측정 센서, 깊이 측정 센서, 속도 측정 센서 그리고 자세 측정 센서들을 대상으로 실제 측정 상황에서 발생 가능한 불확실성들을 반영하여 센서 측정값을 시뮬레이션에 의해 구하는 방법을 구현한다. 측정값은 가우시안 잡음, 비정상 측정값, 그리고 측정치 사이의 상관관계에 의한 불확실성을 포함한다. 또한 각각의 센서들에 대하여 측정값의 불확실성은 물론 측정 시각도 불확실성이 포함되어 결정된다. 시뮬레이션을 통해 구해진 측정값에 대하여 통계적인 방법으로 불확실성에 관한 변수들을 구하고 센서 측정값의 설계시에 목표하였던 불확실성 변수 값들과 비교하여 제안된 방법의 타당성을 검증하였다. 또한 시뮬레이션에 의하여 구한 센서 측정값을 위치 추정 알고리즘에 적용하여 시뮬레이션 로봇의 실제 위치와 추정 위치를 비교하는 방법으로 실제 활용 가능성을 보인다.

구름레이더를 이용한 대기 공기의 연직속도 추정연구 (Study on the Retrieval of Vertical Air Motion from the Surface-Based and Airborne Cloud Radar)

  • 정은실
    • 대기
    • /
    • 제29권1호
    • /
    • pp.105-112
    • /
    • 2019
  • 대기 중에 지름이 약 1.68 mm 이상인 물방울이 존재하는 경우, 연직방향으로 주사하는 구름레이더에서 미(Mie) 기법을 사용하여 공기의 연직속도를 구할 수 있다. 이 리뷰논문에서는 강수가 있는 작은 적운 구름에서 구름레이더를 사용하여 공기의 연직속도를 구할 수 있는 방법을 정리하였다. 공기의 연직속도는 첫 번째 미(Mie) 최소치가 이론적으로 가지는 낙하속도와 스펙트럼상에서 첫 번째 미(Mie) 최소치가 실제로 관측된 시선속도와의 차이로 추정할 수 있다. 구름레이더가 항공기에 탑재된 경우에는, 항공기의 운동 및 자세각이, 관측된 도플러속도의 연직성분에 영향을 미치므로 이 항들을 보정하여 공기의 연직속도를 구할 수 있다. 항공용 도플러 레이더의 경우, 미(Mie)기법으로 구한 공기의 연직속도는 구름입자로부터 직접 후방산란 되어 관측된 연직속도 및 항공기 운항시스템으로부터 구한 연직속도와 잘 일치하는 결과를 보여주었다. 구름 레이더로부터 미(Mie) 산란 특징을 이용하여 연직속도를 추정하는 이 기술은 강수 및 비강수 구름시스템에서의 연직속도장 매핑(mapping)에 응용할 수 있다. 또한 여러 고도에서의 항공기 관측을 통하여, 연직속도의 총체적인 구조뿐 만 아니라 폭풍우의 성장, 발달, 소멸 주기(life cycle)를 재구성할 수 있을 것으로 기대된다.

저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구 (Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft)

  • 남홍수;박배선;이학태
    • 한국항공우주학회지
    • /
    • 제50권1호
    • /
    • pp.59-66
    • /
    • 2022
  • 도심의 교통체증 문제를 해결하기 위해 eVTOL(Electric Vertical Take-Off and Landing) 항공기를 이용한 도심항공교통(UAM) 개념이 등장하여, 많은 국내외 기간들의 연구가 진행되고 있다. 하지만 도심 위를 필연적으로 비행하게 되는 eVTOL 기체가 차세대 교통수단으로 자리 잡기 위해서는 안전성의 확립이 필수적이다. 추락 시 위험도는 항공 안전과 관련된 대표적인 요소이며, 위험도 분석을 위해서는 돌발 상황으로 인한 기체의 추락 및 충돌 지점 예측이 필요하다. 고정익 모드로 운항하는 비행체의 경우 자세 혹은 방향을 결정하는 데 조종면이 큰 역할을 차지한다. 따라서 본 연구에서는 eVTOL 기체의 추락 시 위험도를 분석하기 위해 추진 시스템이 고장 난 기체의 조종면 각도에 따른 추락 지점의 분포를 추정하는 방법을 제시한다. 여기서, 성능과 형상이 공개된 eVTOL 기체를 대상으로 분석한 데이터를 사용하였다. 또한, 초기 조건에 따른 추락 지점의 분포와 확률을 계산하여 추락할 확률이 높은 구간을 도출하였으며, 추락 순간의 속도를 계산하였다.