• Title/Summary/Keyword: 운전행태 인식 알고리즘

Search Result 2, Processing Time 0.02 seconds

A Study on In-vehicle Aggressive Driving Detection Recorder System for Monitoring on Drivers' Behavior (운전행태 감시를 위한 차량 위험운전 검지장치 연구)

  • Hong, Seung-Jun;Lim, Lyang-Keun;Oh, Ju-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the potential of in-vehicle data recorder system for monitoring aggressive driving patterns and providing feedback to drivers on their on road behaviour. This system can detect 10 risky types of drivers' driving patterns such as aggressive lane change, sudden brakes and turns with acceleration etc. Vehicle dynamics simulation and vehicle road test have been performed in order to develop driving pattern recognition algorithms. Recorder systems are installed to 50 buses in a single company. Drivers' driving behaviour are monitored for 1 month. The drivers' risky driving data collected by the system are analyzed. Aggressive lane change in 50km/h below is a cause in overwhelming majority of risky driving pattern.

Advanced Lane Change Assist System for Automatic Vehicle Control in Merging Sections : An algorithm for Optimal Lane Change Start Point Positioning (고속도로 합류구간 첨단 차로변경 보조 시스템 개발 : 최적 차로변경 시작 지점 Positioning 알고리즘)

  • Kim, Jinsoo;Jeong, Jin-han;You, Sung-Hyun;Park, Janhg-Hyon;Young, Jhang-Kyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.9-23
    • /
    • 2015
  • A lane change maneuver which has a high driver cognitive workload and skills sometimes leads to severe traffic accidents. In this study, the Advanced Lane Change Assist System (ALCAS) was developed to assist with the automatic lane changes in merging sections which is mainly based on an automatic control algorithm for detecting an available gap, determining the Optimal Lane Change Start Point (OLCSP) in various traffic conditions, and positioning the merging vehicle at the OLCSP safely by longitudinal automatic controlling. The analysis of lane change behavior and modeling of fundamental lane change feature were performed for determining the default parameters and the boundary conditions of the algorithm. The algorithm was composed of six steps with closed-loop. In order to confirm the algorithm performance, numerical scenario tests were performed in various surrounding vehicles conditions. Moreover, feasibility of the developed system was verified in microscopic traffic simulation(VISSIM 5.3 version). The results showed that merging vehicles using the system had a tendency to find the OLCSP readily and precisely, so improved merging performance was observed when the system was applied. The system is also effective even during increases in vehicle volume of the mainline.