• Title/Summary/Keyword: 운전자-차량 협력 모델

Search Result 3, Processing Time 0.018 seconds

A Study on Driver-vehicle Interface for Cooperative Driving (협력운전을 위한 운전자-차량 인터페이스 연구)

  • Yang, In-Beom
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.27-33
    • /
    • 2019
  • Various technical and societal approaches are being made to realize the auto driving (AD) and cooperative driving (CD) including communication network and extended advanced driver support system is under development. In CD, it is important to share the roles of the driver and the system and to secure the stability of the driving, so a efficient interface scheme between the driver and the vehicle is required. This study proposes a research model including driver, system and driving environment considering the role and function of driver and system in CD. An efficient interface between the driver and the vehicle to cope with various driving situations on the CD using the analysis of the driving environment and the research model is also proposed. Through this study, it is expected that the proposed research model and interface scheme could contribute to CD system design, cockpit module development and interface device development.

Integrated Risk Management System for Intelligent Vehicle (지능형 자동차의 통합 위험 관리 시스템)

  • Yi, Kyongsu;Choi, Jaewoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1503-1510
    • /
    • 2012
  • This paper presents an Integrated Risk Management System (IRMS), which is designed to integrate longitudinal and lateral collision avoidance systems. Indices representing longitudinal and lateral collision risks are designed. From the designed indices, an integrated control strategy is designed. A collision avoidance algorithm is designed to assist the driver in avoiding collisions by using a vehicle-driver-controller integrated linear model. The performance of the proposed algorithm is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Basic Study for Selection of Factors Constituents of User Satisfaction for Micro Electric Vehicles (초소형전기차 사용자만족도 구성요인 선정을 위한 기반연구)

  • Jin, Eunju;Seo, Imki;Kim, Jongmin;Park, Jejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.581-589
    • /
    • 2021
  • With the recent increase in the introduction of micro-electric vehicles in Korea, interest in micro-electric vehicle user satisfaction is increasing to revitalize related markets. In this paper, a basic study was conducted on the development of public services using micro-electric vehicle based on the constituent factors of user satisfaction. The survey includes: ① 'Analytic Hierarchy Process (AHP) for selecting the priority factors of user satisfaction of micro-electric vehicles', ② 'A survey of micro-electric vehicles image' to collect data in advance for providing users' preferences and transportation services for micro-electric vehicles, ③ In order to investigate the user satisfaction level of users who actually operated micro-electric vehicles, the order of 'user satisfaction survey of micro-electric vehicle drivers' was conducted. In the Analytic Hierarchy Process (AHP) analysis, it was found that users regarded as important in the order of 'user utilization data', 'vehicle movement data', and 'charging service data'. In the micro-electric vehicle image survey, users perceived micro-electric vehicles more positively in terms of "safety", 'durability', 'Ride comfort', 'design', 'MOOE (Maintenance and other operating expense)', and 'environment-friendly' when comparing micro-electric vehicles with electric motorcycles. In the survey on the user satisfaction of micro-electric vehicle drivers, the use of micro-electric vehicle did not directly affect work performance efficiency, and there was an experience of being disadvantaged on the road due to the size of the micro-electric vehicle, and driving in a cluster of micro-electric vehicle for outdoor advertisements. The city's public relations effect was great, but it was concerned about safety. In the future, based on the results of this study, we plan to build a user satisfaction structural equation model, preemptively discover feedback R&D for micro-electric vehicle utilization services in the public field, and actively seek to discover new public mobility support services.