• Title/Summary/Keyword: 운전범위

Search Result 531, Processing Time 0.031 seconds

Decrease of PEMFC Performance by Toluene in Air (공기 중 톨루엔에 의한 고분자전해질연료전지의 성능감소)

  • Lee, Ho;Song, Jin-Hoon;Kim, Ki-Joong;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The contamination effect of toluene in the airstream on PEM fuel cell performance was studied with various toluene concentration under different operation conditions. And the recovery of the cell performance by applying clean air and the removal of toluene in the air by adsorption of active carbon were investigated. The toluene concentration range used in the experiments was from 0.1 ppm to 5.0 ppm. The performance degradation and recovery were measured by constant-current discharging and electrochemical impedance spectroscopy(EIS). Toluene adsorption capacity of KOH impregnated active carbon was obtained from the adsorption isotherm curve. The severity of the contamination increased with increasing toluene concentration, current density and air stoichiometry, but decrease with increasing relative humidity. The cell performance was recovered by toluene oxidation with oxygen and water in humidified neat air. EIS showed that the increase of charge transfer resistance due to toluene adsorption on Pt surface mainly reduced the performance of PEMFC. Toluene adsorption capacity of active carbon decreased as KOH weight increased in KOH impregnated active carbon.

Partial Nitritation in an SBR Reactor by Alkalinity Control (알칼리도 제어에 의한 SBR 반응조에서의 부분아질산화)

  • Lee, Chang-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this study, major parameter of partial nitritation was investigated for the stable operation. In order to establish partial nitritation system, prevailing parameters such as temperature, BA (bicarbonate alkalinity) and pH were evaluated. As a result, it is inferred that appropriate bicarbonate alkalinity ratio (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) drives stable 50% partial nitritation at $32^{\circ}C$ and ambient temperature, respectively. Alkalinity ratio was proposed as new strategy for 50% partial nitritation without pH control in both temperature regimes. Because of the results, it was added amound of BA required only for 50% nitritation to inhibit nitratation. The effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio reached almost 100% when initial bicarbonate alkalinity ratios (mg $NaHCO_3{\cdot}L^{-1}/mg$ Inf. $NH_4{^+}-N{\cdot}L^{-1}$) were 6.8 (R1) and 6.7 (R2), respectively. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) results demonstrated that AOB was the dominant nitrifying bacteria and NOB was negligible after adopting process control.

Optimization of bio-$H_{2}$ production from acid pretreated microalgal biomass (미세조류로부터 바이오 수소 생산을 위한 산(acid) 전처리의 최적화)

  • Yun, Yeo-Myeong;Jung, Kyung-Won;Kim, Dong-Hoon;Oh, You-Kwan;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2012
  • In this study, dark fermentative hydrogen production (DFHP) from acid pretreated microalgal biomass was optimized with via statistical experimental design. Acid concentration and reaction time were varied from 0.1 to 3% (v/w) and 10 to 60 min with substrate concentration of 76 g dry cell weight (dcw)/L and initial pH of 7.4, respectively. During the fermentation, pH was not controlled. The optimal condition was found that at $H_{2}$ yield reached to 37.3 mL $H_{2}/g$ dcw at 1.2% HCl and 48 min. Through regression analysis, it was found that $H_{2}$ yield was well fitted by a quadratic polynomial equation ($R^{2}$=0.95). HCl concentration was the most significant factor influencing DFHP. The results of ANOVA verify that HCl concentration was the most significant factor influencing DFHP.

Study on Design Technology of Heat Pump Cycle for High Temperature Performance (고온 생산용 열펌프 사이클 설계)

  • Kim, Jong-Ryul;Kim, Seok-Young;Kim, Yong-Min;Lee, Kong-Hoon;Kim, Ook-Joong;Yi, Sung-Chul;Jung, Chi-Young;Kim, Jong-Ryeol
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2010
  • About 55% of total energy is consumed in the industrial division. The industrial heat pump application will show magnificent energy saving effect as well as higher cost efficiency because of larger energy consuming volume of each facility and longer operation hour and higher stability against seasonal temperature change. Over 90% of dryer for industrial usage has hot wind heat source and hot wind dryer is the representative type covering 68.7% while its 30 ~ 50% lower heat efficiency causes lots of energy loss by exhaust air. Re-usage of exhaust air can improve energy efficiency of dryer because 68% heat energy or 78% of hot air lose in exhaust air. Therefore, high temperature heat pump dryer can be the best alternative. Comparing to the existing dryer with 30% ~ 50% energy efficiency, newly developing high temperature heat pump dryer will enhance energy efficiency up to 60% ~ 80% efficiency. In this paper, heat pump system for high temperature was designed, constructed and tested. The results have shown that system COPh is estimated as 3.3.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Nitrogen Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 주기와 시간의 영향)

  • Hong, Sung Tack;Park, Jin Yong
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • The $N_2$ back-flushing period (FT) and time (BT) were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As decreasing FT and increasing BT, $R_f$ decreased and J increased, and finally the maximum $V_T$ could be acquired at FT 10 min and BT 30 sec. In FT effect experiment, treatment efficiencies of turbidity and dissolved organic matters (DOM) were the highest at no back-flushing (NBF) because of dramatic membrane fouling. As result of BT effect, the treatment efficiencies were the maximum at BT 30 sec, which was different with the FT result. Because the photocatalyst beads could be cleaned effectively as decreasing FT and increasing BT, turbidity treatment efficiency increased a little from 95.4% to 97.5% as decreasing FT, and from 95.9% to 98.5% as increasing BT. Also DOM treatment efficiency increased from 70.8% to 80.6% as decreasing FT, and from 75.1% to 85.8% as increasing BT. The optimal condition, where the treatment efficiencies and $V_T$ were the maximum, should be FT 10 min and BT 30 sec in our experimental range.

An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle (Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능)

  • Kim, Jeongbae;Lee, Kyu-Sun;Lee, Geunan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.124-129
    • /
    • 2015
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle using inverter scroll compressor with and without $Al_2O_3$ nano particle. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDY to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. The COP of refrigeration cycle with $Al_2O_3$ nano-particle was similar with that of the base cycle without nano-particle between 1000~3000 rpm of the compressor speed. But, This study showed that the COP of the cycle with $Al_2O_3$ over 3000 rpm of the compressor speed was higher than that of the base cycle due to the higher heat transfer rate increased in the evaporator from the higher oil flow rate inside the cycle as well known. Those results can be used the basic and fundamental data to design the air-conditioning cycle using inverter scroll compressor with $Al_2O_3$ nano particle.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Induction coordination of the 154KV system with direct grounding (154KV 계통직접접지전환에 따른 유도협조)

  • 손필영;원준희
    • 전기의세계
    • /
    • v.18 no.1
    • /
    • pp.33-37
    • /
    • 1969
  • 한전은 1968년 11월 3일 오전 10시 04분을 기하여 154KV 전계통의 직접접지방식 전환을 단행하였다. 종전의 P.C(소고선륜) 중성점접지방식을 직접접지방식으로 전환한것으로서 전력사상 특기 할 만한 근대화사업이며 다년간을 두고 추진해온 중요과제였다. 전력계통의 확대와 복잡화는 선진국가에서도 실시하고 있는 직접접지방식의 채택을 불가변하게 하였고 또한 1차 AID송배전차관도 이의 채택을 조건부로 승인되었던 것으로서 1968년 이후에 건설되는 송변전기기는 직접접지계에서만 운전할 수 있는 절연Level 650KV급이 도입되어 부산화력발전소 3호기가 준공되는 1968년 10월말까지는 직접접지전환이 반드시 이루어져야 하는 실정에 놓여 있었다. 그런데 직접접지방식의 단점인 인접통신선에 미치는 유도장해를 해결하는 문제가 다년간을 두고 진지하게 검토되어 왔으나 해결이 늦어지고 있었다. 사유는 154KV 계통에 인근된 통신선이라면 체신부, 내무부, 교통부, 국방부등 여러기관의 것이 있는데, 유도장해보안방법과 유도보상비문제에 대하여 전력측(상공부, 한전)과 통신측(상기의 체신부등)의 견해차가 해소되지 않기 때문이었다. 그것이 1968년 5월에 와서 전력.통신쌍방이 범국가적입장에서 제반애로를 무릅쓰고 최소한의 투자로 가능한 범위내의 보안책으로서 우선 Arrester 보안방식을 채택하기로 합의되어 경제장관회의를 거쳐 시공하기에 이른것이다. 이 란을 빌려 이 사업의 필요성과 경위및 통신선유도장해방지를 위한 보안방식내용을 간단히 소개함으로써 앞으로 이 분야의 항구적인 유도대책연구에 다소나마 참고가 된다면 다행으로 생각하겠다.면서 예측강우의 질이 저하되기 시작하였으나 QPM을 합성함으로써 생산한 BQPF는 보다 신뢰성있고 양호한 결과를 얻을 수 있었다. 이러한 결과들은 향후 정량적 분포형강우 예측을 이용한 실시간 홍수유출 예측시 댐운영자는 리드타임(홍수선행시간)을 충분히 확보함으로서 안정적이고 예측 가능한 홍수조절을 하는데 도움을 줄 수 있을 것으로 기대된다. 이와 같이 다양한 단기저수지 유입량의 예측정보 제공으로 다목적댐 저수지 운영모형의 효용성을 제고하여 향후 실제 저수지 유입량 예측에 이용함으로써 저수지 단기운영효율 개선에 기여할 수 있을 것으로 사료된다.다. 이것은 여름철 강수량이 증가하고, 호우발생빈도, 특히 8월의 강수일수가 증가하고 있다는 것과 밀접한 관련이 있다. 여름과 가을에 우리나라에 영향을 미치는 태풍의 수는 뚜렷한 추세를 보이지 않으나, 2002년 루사, 2003년 매미로 인하여 각각 6조원, 4조원 이상의 막대한 피해가 발생하였다. 태풍에 의한 피해액은 GDP 대비 약 0.9%(태풍 루사)로 최근 경제상장률과 비교해 보면, 상당한 비율을 차지한다. 우리나라에 영향을 미치는 태풍은 연근해의 해수면 온도가 높아지면 세기가 강해질 가능성이 높다. 폭설과 한파일수도 평년대비 최근 10년 감소하였고 일최저기온이 영하 $10^{\circ}C$ 이하인 날도 연간 발생일수가 감소하였다. 최근 10년간 우리나라 기후의 변화특성은 기온상승과 더불어 서리종료일이 앞당겨지고 열대야가 증가하고 폭설, 한파, 겨울철 일최저기온 영하 10도 이하인 날의 감소 등이 나타나고, 여름철 재해의 원인인 호우일수는 증가하는 추세이다.

  • PDF

A Study on Catalytic Process in Pilot Plant for Abatement of PFC Emission (PFC 배출 저감을 위한 파일롯 규모 촉매 공정 연구)

  • Lee, Young-Chun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.216-220
    • /
    • 2012
  • The objective of the present study was to evaluate catalytic performance of a commercial catalyst (Co/$ZrO_2-Al_2O_3$) for the decomposition of perfluorinated chemicals in a pilot scale reactor containing 30 L of catalysts. At a reaction condition of GHSV $1,800h^{-1}$, $T_{95}$ of $SF_6$ was increased from 580 to $610^{\circ}C$ with increasing of $SF_6$ concentration from 1,000 to 10,000 ppm. $T_{95}$ of $SF_6$ in catalytic decomposition was much smaller than that of thermal decomposition ($1,600^{\circ}C$). The 99% conversion of $SF_6$ was maintained for 72 hours a reaction temperature of $650^{\circ}C$. In order to maintain the $SF_6$ conversion more than 99%, it is necessary to operate at a reaction condition of GHSV less than $2,000h^{-1}$. An operating temperature of $710^{\circ}C$ was required to achieve >95% destruction of the $CF_4$, which was much higher than that of catalytic decomposition of $SF_6$.

Characteristics of Ammonia Removal from a Synthetic Wastewater in a Jet Loop Reactor with a Two-fluid Venturi-type Swirl Nozzle (이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기에서 합성폐수 중의 암모니아 제거특성)

  • Noh, Da-ji;Yun, Chan-Su;Lim, Jun-Heok;Won, Yong-Sun;Lee, Tae-Yoon;Lee, Jea-Keun
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • We investigated the performance of a jet loop reactor (JLR) with the two-fluid venturi-type swirl nozzle (TVSN) during experiment for ammonia removal by air stripping from a synthetic wastewater, and compared it with that of a JLR with the two-fluid venturi-type conventional nozzle (TVCN), with the variation of pH, liquid circulation rate ($Q_L$), and air flow rate ($Q_G$). Their performance levels were compared based on the ammonia removal efficiency and overall mass transfer coefficient ($K_La$). Investigated parameters in a JLR were pH (10-12), air flow rate ($Q_G=5-20L\;min^{-1}$), and liquid circulation rate ($Q_L=25-35L\;min^{-1}$). Throughout the experiment, the ammonia removal efficiency and $K_La$ in a JLR with TVSN was higher than in a JLR with TVCN. This may be due to the enhanced turbulent intensity by swirling flow formed in the JLR with TVSN compared to that with TVCN. Further, we obtained higher $K_La$ when pH, $Q_L$ and $Q_G$ were increased. In particular, $K_La$ was increased more efficiently by increasing $Q_G$ than by increasing pH and $Q_L$.