• Title/Summary/Keyword: 운모

Search Result 452, Processing Time 0.024 seconds

A Study on Geology and Clay Minerals of the Landslide Area in the Munhyun-dong, Nam-gu, Pusan (부산시 남구 문현동 산사태 지역의 지질 및 점토광물에 대한 연구)

  • 황진연;김선경;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 1999
  • In this study the occurrence and mineralogical characteristics of clay minerals from the Munhyun-dong landslide area in Pusan city were examined by XRD, SEM, and chemical analyses. Several types of clay minerals such as halloysite, vermiculite, mica/vermiculite interstratified mineral, vermiculite/smectite interstratified mineral, kaolinite and illite are found abundantly in the area. The occurrence of clay minerals suggest that they have been formed by weathering of andesite which is the bedrock of the area. It is believed that halloysite was formed in the early stage of weathering, and vermiculite, mica/vermiculite interstratified mineral and mica/vermiculite interstratified mineral were formed in the middle stage, and finally, kaolinite was formed. The clay minerals occurring in the central part of the landsliding area and within the slip surface are dominated by expandable minerals such as halloysite, vermiculite and vermiculite/smectite interstratified mineral. These clay minerals expand by absorbing water and effectively decrease the shear resistance of the rock mass, and therefore, they could be an important factor for the landslide. The analyses of geology and mineralogical characteristics of the area suggest that the landslide was caused by combination of various factors including steep slope, heavy rainfall, abundant joints, alteration of the rocks, and occurrence of expandable clay minerals. The result of this study suggests that the investigation for the prevention of possible landslide must include the examination of clay mineralogy as well as the site geology.

  • PDF

General Geochemical Characteristics of Dashinchilen Nb-Ta and Sant Cu Occurrences in Southeastern Part of Khangai Area, Mongolia (몽골 항가이 남동부 지역 다신칠렌 탄탈륨-니오븀 및 산트 동 산출지의 지구화학적 특성 개요)

  • Kim, In Joon;Lee, Bum Han;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.455-468
    • /
    • 2013
  • We performed reconnaissance survey on Dashinchilen Nb-Ta REE area and Sant Cu area which are located in southeastern part of Khangai rare metals mineralized belt. In Dashinchilen area, Nb and Ta have been found in pegmatitic granite that is largely distributed in the survey area and muscovite in pegmatite which is an intrusion in paleozoic sedimentary rocks which are mostly composed of sandstone. While grades of Nb and Ta are not high, an outcrop that has high Th and U contents (542 ppm of Th and 56.9 ppm of U) has been found. Average and maximum REE contents in the survey area is three times and seven times, respectively, larger than average REE contents in the crust of the Earth. In Sant area, copper oxides such as malachite has been found in quartzite in paleozoic sedimentary rocks. A sedimentary rock formation that has high grade of Mn (12.4-34.6 %) has been found in the survey area. This sedimentary rock formation is the same formation with that of Ugii Nuur Fe-Mn mineralization which is located about 200 km northwest of the survey area. Average and maximum REE contents in the survey area is two and half times and seven times, respectively, larger than average REE contents in the crust of the Earth. According to the factor analysis for the data of the geochemical analysis, Nb and Ta in Dashinchilen area are highly correlated with muscovite and Cu in Sant area is highly correlated with Mo, Sn, and Bi. Furthermore, the factor analysis results show that Fe in Sant area was deposited with rare earth elements.

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo (충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학)

  • 이승준;안중호;김현철;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2002
  • Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area (문경지역 사동층, 고방산층 셰일에 대한 광물학적 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo;Kim, Young-Mi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The metamorphic environments occrrred in the Sadong and the Gobangsan formations were studied through the investigation of chloritoid and white mica in shales at Munkyung area. Two types of white mica occurs in the shale of Sadong formation; muscovite-dominant ($Mu_{76.1}Pa_{18.1}Ma_{5.8}$) and margarite-dominant ($Ma_{52.9}Mu_{31.6}Pa_{15.5}$). It is inferred that the muscovite-dominant white mica is generated by the diagenesis of Na-rich illite whereas the margarite-dominant white mica is generated by reactions between calcite and pyrophyllite separated from illite. In shales of the Gobangsan formation, chloritoids are observed with muscovite, pyrophyllite and chlorite. The chloritoids of the Gobangsan formation are considered to be originated from the reaction between pyrophyllite and chlorite. The Sadong and Gobangsan formations would have experienced the low-temperature metamorphism (anchizone) considering that white mica in general forms above the temperature of $200^{\circ}C$ and the assemblage of chloritoid-pyrophyllite-chlorite is stabilized below $280^{\circ}C$.

Mineralogy of Clay Minerals from the Sarisan Mine, Korea (麗州 싸리산 鑛山에서 産出하는 粘土鑛物에 對한 鑛物學的 硏究)

  • Kim, Geon-Young;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.79-92
    • /
    • 1992
  • The Sarisan clay deposits of hydrothermal origin are found in the intensely weathered wto-mica granite in Yeoju area. The major clay minerals of the Sarisan mine are illite and montmorillonite with minor disordered kaolinite, vermiculite, and some interstratified mineral. Clay minerals were studied using various methods including X-ray diffraction, infrared absorption spectroscopy, electron microscopy, and thermal and chemical analyses. Illites occur as discrete illite or highly illitic interstratified mineral. They are of 1M and $2M_1$ polytypes and characterized by a low lattice charge (1.768-0.926 per unit formula), low $K^+$ content (0.741-0.902 per unit formula), and high Si/Al ratio (1.154-1.293) as compared with muscovite. Montmorillonites are highly negative charged and occasionally random-interstratified as I/S with 80-98% smectite. Hydrothermal alteration is more important than later weathering alteration for the formation of illite and montmorillonite clay minerals. The hydrothermal alteration took place through two stages; the formation of illite in the early stage and the formation of montmorillonite in the late stage. Disordered kaolinite and vermiculite are the weathering products of plagioclase and biotite, respectively.

  • PDF

Characteristics and Genesis of the Clay Minerals in Weathering Products from the Guweol Mountain Area, Pusan (부산시(釜山市) 구월산(九月山)의 풍화물중(風化物中) 점토광물(粘土鑛物)의 특성(特性) 및 성인(成因))

  • Hwang, Jin-Yeon;Jang, Myoung-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.158-167
    • /
    • 1994
  • The various weathering products derived from andesitic rocks in the Guweol mountain area of Pusan have been studied in order to investigate the occurrence, characteristics and evolutional trend of clay minerals in the weathered rock and soil using mainly X-ray powder diffraction method. Kaolinite and halloysite are very abundant in the weathered rocks and soils derived from andesitic rocks of this area. Also, $12{\AA}$- and $14{\AA}$-minerals occur in the considerable amount. $12{\AA}$-minerals have been identified as mica/vermiculite interlayer minerals showing the $25{\AA}$ basal reflection. Their crystal sizes are relatively big showing more than 10 micron in diameter. Two types of $14{\AA}$-mineral, which are vermiculite/smectite interlayer mineral and Al-vermiculite, have been observed. Kaolin minerais consist of kaolinite, $10{\AA}$ and $7{\AA}$ halloysite. Kaolinite relatively dominates in the strongly weathered soil of the area. In contrast with kaolinite. $12{\AA}$- and $14{\AA}$-minerals such as vermiculite/smectite and mica/vermiculite interlayer minerals tend to occur in the weakly to intermediately weathered products. Based on their occurrences, it strongly suggests that they are intermediate products in the course of the weathering process from the parent materials into the kaolin mineral.

  • PDF

Analysis of the petrological characteristics and deterioration phenomena of the rocks consisting the Gwangtonggyo(bridge) on the Cheonggyecheon(river) (광통교 구성암석의 석질 및 훼손양상 분석 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.39-56
    • /
    • 2005
  • The Gwangtonggyo(bridge) on the Cheonggyecheon(river) is mainly composed of biotite granite with coarse grain. The rock consists mainly of quartz, plagioclase, microcline, orthoclase and biotite with lesser amount of muscovite, sericite and chlorite. Muscovite and sericite may be formed from feldspars and chlorite from biotite by alteration(including weathering). These rocks are relatively deteriorated by weathering, polluted water running the river and heavy traffic. The main phenomena of damages are surface exfoliation, grain separation, deceleration, pollution of organic and heavy chemical elements, cracks and breakage. These phenomena have been analyzed by polarized microscope, XRD and SEM/EDX. The analyzed results show organic pollution and secondarily formed gypsum and apatite on the rock surface and micro-pores. NaCl and $CaCO_3$ as rock salt and calcite probably may be formed secondarily in some points. Also heavy chemical elements such as Cr, Pb, Pd, W, La, Zn and Nd are polluted in some samples. The contacts between rocks are generally breakdown in small scale or cracks are developed due to mainly load and vibration shock of heavy traffic.

  • PDF

Petrological Study on Small-scale Granites in the Central Part of Yeongnam Massif (영남육괴 중부지방에 존재하는 소규모 화강암체들의 암석학적 연구)

  • Kim, Hyeong-Gyu;Jwa, Yong-Joo;Kim, Jae-Hwan;Park, Sung-Chul
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.279-298
    • /
    • 2019
  • Mupung granite, which is located adjacent to Gimcheon granites to the north and Geochang granites to the south, has been known to consist of biotite-hornblende granite (Gbh), porphyritic granite (Gp), and hornblende-biotite granite (Ghb). In this study, we subdivided the Gbh of Mupung granite into biotite granite (Gb) and biotite hornblende granite (Gbh), based on petrological observations. The grayish Gb with medium to coarse grain and porphyritic texture contains a small amount of muscovite, but the hornblende and mafic microgranular enclave (MME) is not observed in Gb. On the other hand, MME can be commonly found in pinkish Gbh. The mafic minerals in Gbh are mostly hornblende and biotite. In the Gb in Mupung granites, the hornblende and sphene (which is the characteristic minerals in Gimcheon granite) are not observed. In addition, the trend of the changes in major elements of Gb in Mupung granites is similar to that of Geochang granites. These petrological characteristics suggest that the Gb in Mupung granite has a similarity with Geochang granite (than Gimchen granite). We also observed that the texture and composition of minerals of Gbh, as well as those of surrounding Gp and Ghb, are consistent with the characteristics of Cretaceous granites in Gyeongsang basin, rather than those of Jurassic granites in Yeongnam massif.

Hydrothermal Alteration and Engineering Characteristics in the Bokan Tunnel Area passing through the Yangsan Fault (양산단층을 통과하는 복안터널구간의 열수변질작용과 공학적 특성)

  • Lee, Chang-Sup;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The study area is a tunnelling section passing through the Yangsan Fault zone. Kyungbu express highway and national road 35 are located above the tunnel. Previous study showed that fault gouge and fault breccia were widely distributed in the tunnelling section with a maximum width of 100 m. From the present study, it is found that sedimentary rocks consisting mainly of shale are distributed at the eastern block of the Yangsan Fault and these rocks are not subject to mechanical fracturing and hydrothermal alteration. On the other hand, dacitic tuff distributed at the western block of the Yangsan Fault is largely affected by mechanical fracturing and hydrothermal alteration. The large fault zone of $50{\sim}130m$ width was formed by complex processes of mechanical fracturing and hydrothermal alterations such as chloritization, sericitization, and kaolinization. Based on the characteristics of mechanical fracturing and hydrothermal alterations, the Yangsan fault zone in the study area is geotechnically classified as four zones: unaltered zone, altered zone, altered fractured zone, and fault gouge zone. These zones show different degrees and aspects in mechanical fracturing and hydrothermal alterations, resulting in different engineering properties.

Evaluation of Alkali-Silica Reactivity for Aggregates in Korea according to Test Methods (시험방법에 따른 국내 골재의 알칼리-실리카 반응성 평가)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.689-696
    • /
    • 2008
  • The purpose of this study was to evaluate the alkali-silica reactivity for aggregates in Korea according to test methods: accelerated mortar bar test (AMBT) by ASTM C 1260; chemical test by KS F 2545 (ASTM C 289). The results are as follows: The AMBT (ASTM C 1260) results showed that two (2) igneous rocks (two mica granite and felsite), three (3) sedimentary rocks (arkose, red sandstone and shale), two (2) metamorphic rock (slate and vitric tuff), one (1) mineral (quartz) showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. Therefore, it is necessary to extend the experimental dates more than 14 days to evaluate the possibility of alkali-aggregate reactivity. The chemical test (KS F 2545) results showed that five (5) igneous rocks (andesite, diabase, granite porphyry, muscovite granite and diorite) were indicative of potentially deleterious expansion, while two (2) igneous rocks (diorite porphyry and quartz porphyry) were possible indicative of expansion, and three (3) igneous rocks (biotite granite, two mica granite and felsite) were indicative of innocuous reactivity. The above results showed that the results from chemical method (KS F 2545) and AMBT (ASTM C 1260) had little relationship.