• Title/Summary/Keyword: 운동 정확도 측정

Search Result 254, Processing Time 0.029 seconds

The Study of Two-dimensional Chemical Distribution about Soil using Laser Spectroscopy (레이저 분광법을 활용한 토양 2차원 화학적 분포도 검출 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • Laser-Induced Breakdown Spectroscopy (LIBS) which a plasma is irradiated at a specific wavelength depending on the material when a high-energy laser is irradiated, and a Raman spectroscopy which measures rotation and vibration in molecules as light-scattering phenomenon occurs, are attracting attention as a space exploration technology because of the advantages of high accuracy and real-time analysis, and the ability to perform long-range detection. In this study, the tendency of the laser spectrum according to the change of the soil component was analyzed by laser spectroscopy and the two - dimensional chemical distribution was conducted based on the trend of laser spectrum. We have also established the environment of Mars (4-7 torr) and lunar atmosphere (<1 torr) in experimental setup, to prove that it is possible to measure by difference of soil chemical composition using LIBS and Raman spectroscopy even in artificial space environment.

A Development Of Multi-sensor System For Location Determination Of Fixed-path Movement Attractions (고정경로 이동 어트랙션의 위치 판단을 위한 다중 센서 시스템의 개발)

  • You, Eun-Jae;Jeong, Hwi-Sang;Lee, Hyoun-Sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.709-714
    • /
    • 2018
  • Visual Reality technology is becoming more and more interesting as it attracts people's interest. VR technology is used in various markets such as games, animation, and education. However, there were many people experiencing motion sickness such as dizziness and headache due to the delay time between hardware such as a device for sending a video after experiencing a VR image and an HMD for reproducing an image. The system proposed in this paper focuses on the environment rather than the movement of the attraction and detects the dividing line existing on the path by the proximity sensor and accurately calculates the position on the path according to the user 's motion. Since the position of the user is synchronized with the VR image, the position error of the user is improved to 0.2%.

Development of Real-time Blood Pressure Monitoring System using Radio Wave (전파를 이용한 실시간 혈압 모니터링 시스템 개발)

  • Jang, Dong-won;Eom, Sun-Yeong;Choe, Jae-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.308-311
    • /
    • 2015
  • Because worldwide interest in the health is increased, the real-time health monitoring system has been demanded to be more convenient non-contact and precise medical devices than conventional. Therefore we developed the blood pressure monitoring system using UWB(Ultra Wide Band) radio wave which contact to the human body through the radar and continuously collect a movement signal of the blood vessel. Then the collected data including pulse rate, systolic blood pressure, diastolic blood pressure is processed in real time. The system monitors and controls through a program-based embedded LCD(Liquid Crystal Display) using Qt GUI(Graphic User Interface) to be displayed in real time. We implement the system as a embedded system because of reducing the size of the limited resources. Existing PC GUI design mode is used relatively large memory, therefore it requires more CPU(Central Processing Unit) capacity and processing time.

  • PDF

Evaluation of Inertial Measurement Sensors for Attitude Estimation of Agricultural Unmanned Helicopter (농용 무인 헬리콥터의 자세추정을 위한 관성센서의 성능 평가)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • The precision aerial application of agricultural unmanned helicopters has become a new paradigm for small farms with orchards, paddy, and upland fields. The needs of agricultural applications require easy and affordable control systems. Recent developments of MEMS technology based on inertial sensors and high speed DSP have enabled the fabrication of low-cost attitude system. Therefore, this study evaluates inertial MEMS sensors for estimating the attitude of an agricultural unmanned helicopter. The accuracies and errors of gyro and acceleration sensors were verified using a pendulum system. The true motion values were calculated using a theoretical estimation and absolute encoder measurement of the pendulum, and then the sensor output was compared with reference values. When comparing the sensor measurements and true values, the errors were determined to be 4.32~5.72%, 3.53~6.74%, and 3.91~4.16% for the gyro rate and x-, z- accelerations, respectively. Thus, the measurement results confirmed that the inertial sensors are effective for establishing an attitude and heading reference system (AHRES). The sensors would be constructed in gimbals for the estimating and proving attitude measurements in the following paper.

Prediction of the Blade Flapping Angle for Korean Utility Helicopter by Applying Indirect Method (간접기법을 이용한 한국형 기동헬기 블레이드 플래핑 각도 예측)

  • Kim, Young-Jin;Lee, Sang-Gi;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.888-895
    • /
    • 2015
  • This paper shows an approximate equation which calculates a flapping angle of blade for verification of KUH safety area. The flapping behavior of blade must be reviewed in an aspect of safety because of a collision possibility with airframe. However, it is difficult to measure an exact flapping angle during flight. A prediction equation of a coning angle is derived from aeromechanics and that of a dynamic flapping angle is derived from analysis results in development phase, respectively. Following, the equations are verified by comparison the flapping angle through an aircraft simulation test to a calculation. Finally, the safety area, which was established in development phase, is verified by calculating a flapping angle during the flight which is required by the terms of safety based on AC29 and FAR29.

A Study for determining the braked weight of Iran DMU using UIC 544-1 (UIC 544-1을 이용한 이란동차 Braked Weight 산출에 관한 연구)

  • Yun, Gi-Seok;Jeon, Woon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1624-1633
    • /
    • 2009
  • Brake system in railway train operates to reduce the speed of the train or to stop the train via changing the kinematic energy into heat energy for emission and so brake system makes an important rule to transport passenger and cargo for safety operation. Recently operators have a matter of grave concern for the verification of performance in brake system. To verify the exact performance of brake system, most of brake test has been carried out on real operating track condition. Therefore we will determine the braked weight of indirect brake system applied in Iran DMU(Diesel Multiple Unit) in accordance with mc leaflet 544-1, which is to enable Iran DMU to achieve the required braking distances in defined situation.

  • PDF

A WPHR Service for Wellness in the Arduino Environment (아두이노 환경에서 웰니스를 위한 WPHR 서비스)

  • Cho, Young-bok;Woo, Sung-hee;Lee, Sang-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • In this paper, we propose an algorithm for analyzing personal health log information in android environment, providing personal health log information in android environment, providing personalized exercise information and monitoring the condition of pedestrians. Personal health log data collection is performed based on raw data of user using MPU6050 sensor based on Arduino. Noise was removed and age threshold was applied to distinguish movement information. In addition, to protect personal information, safety is enhanced by providing anti-compilation prevention and encryption/decryption of APK file, and the result of movement information collection is measured according to sensor location. Experimental results showed that the MPU6050 sensor mounted one the ankle wsa measured 98.97% more accurately then the wrist. In addition, the loading time of SEED 128 bit encryption based DEX file has the average time of 0.55ms, minimizing the overhead.

Sentiment Analysis for Public Opinion in the Social Network Service (SNS 기반 여론 감성 분석)

  • HA, Sang Hyun;ROH, Tae Hyup
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • As an application of big data and artificial intelligence techniques, this study proposes an atypical language-based sentimental opinion poll methodology, unlike conventional opinion poll methodology. An alternative method for the sentimental classification model based on existing statistical analysis was to collect real-time Twitter data related to parliamentary elections and perform empirical analyses on the Polarity and Intensity of public opinion using attribute-based sensitivity analysis. In order to classify the polarity of words used on individual SNS, the polarity of the new Twitter data was estimated using the learned Lasso and Ridge regression models while extracting independent variables that greatly affect the polarity variables. A social network analysis of the relationships of people with friends on SNS suggested a way to identify peer group sensitivity. Based on what voters expressed on social media, political opinion sensitivity analysis was used to predict party approval rating and measure the accuracy of the predictive model polarity analysis, confirming the applicability of the sensitivity analysis methodology in the political field.

Temporal and Spatial Variation of the Sea Surface Temperature Differences Derived from Argos Drifter Between Daytime and Nighttime in the Whole East Sea (위성추적 표류부이를 이용한 동해 표면수온의 주야간 온도차에 대한 중규모 시공간 변동)

  • 서영상;장이현;이동규
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.219-230
    • /
    • 2001
  • The daytime and nighttime sea surface temperature (SST) differences and their seasonal variabilities in the East Sea were studied using Argos drifters data during 1996~1999. The SST differences for 1,438 data set were derived from 30 Argos drifters related to the NOAA satellite-based location and data collection system. The horizontal variation of SST differences in summer in the East Sea were higher than those in winter. The relationship between the SST differences and the half day moving distances of Argos drifters was studied. Monthly SST difference in the northern and southern part of 38$^{\circ}$N in the East Sea was considered. The SST differences derived from NOAA-14 satellite were compared with those from Argos drifter between daytime and nighttime in the turbulent eddy off Wonsan coast of Korea.

Health Monitoring of Livestock using Neck Sensor based on Machine Learning (목걸이형 센서를 이용한 머신러닝 기반 가축상태 모니터링)

  • Lee, Woongsup;Park, Seongmin;Ban, Tae-Won;Kim, Seong Hwan;Ryu, Jongyeol;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1421-1427
    • /
    • 2018
  • Due to the rapid development of Internet-of-Things technology, different types of smart sensors are now devised and deployed widely. These smart sensors are now used in animal husbandry which was traditionally managed by the experience of farmers, such that wearable sensors for livestock, and the smart farm which is equipped with multiple sensors are utilized to increase the efficiency of livestock management. Herein, we consider a scheme in which the body temperature and the level of activity are measured by smart sensor which is attached to the neck of dairy cattle and the health condition is monitored based on collected data. Especially, we find that the estrous of dairy cattle which is one of most important metric in milk production, can be predicted with high precision using various machine learning techniques. By utilizing the proposed prediction scheme, estrous of cattle can be detected immediately and this can improve the efficiency of cattle management.