• Title/Summary/Keyword: 운동파

Search Result 661, Processing Time 0.027 seconds

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Wave Friction Factor far Rough Turbulent Flow (전난류에서의 파마찰계수)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1993
  • It is often assumed that the wave velocity at the bottom given by potential wave theory il the same as the wave velocity at the top of the turbulent boundary layer. This assumption is found to be the major cause of the error detected by recent elaborate theories and numerical models for the description of velocity profile near the sea bottom. A relationship is suggested between the potential velocity and the real boundary velocity. Based on this relation, the existing theories of Jonsson (1967) and Fredsoe (1984) are refined for the estimation of wave friction factor, and the computation results of the modified theories are favourably compared with the published laboratory results.

  • PDF

On the Calculation of Added Resistance of a Ship by Maruo′s Formula (Maruo 공식에 의한 부가저항 계산에 대한 소고)

  • 홍도천;홍사영;김은찬
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.202-207
    • /
    • 2001
  • The added resistance of a ship advancing in waves can be split into the resistance due to the radiation wave and the resistance due to the diffraction wave. In this study, the former has been calculated by a method based on Maruo's formula. The latter must be calculated by other methods. Ship motion is calculated by the usual strip method. The amplitude of two dimensional far-field waves is calculated using the improved Green integral equation. The present numerical method can be used for the estimation of the added resistance due to the radiation wave since the present numerical result is much smaller than other existing numerical results considered to be overestimated.

  • PDF

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Analysis of the Wave Induced Downtimes in Pohang New Harbor (포항신항내 파랑에 의한 Downtime 분석)

  • 정원무;오세범;채장원;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-34
    • /
    • 1997
  • To find the causes of the downtime problems in Pohang New Harbor, extensive field measurements of short- and long-period waves for 1.5 months and their analyses were made taking into account of wind and downtime records. Measured wave height ratios inside the harbor are appeared to be slightly larger than predicted ones using numerical methods in the previous studies. It is shown that the major causes of the downtime are the wind wave (or swell) higher than loading criteria and also swell with even smaller wave height but longer period(more than 10 sec). Waves of long-period components[0(min)] were recorded as 20 cm high in case of dominant seiche phenomena but they might not be related with the downtime problems.

  • PDF

Fluidic Thrust Vector Control Using Shock Wave Concept (충격파 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.10-20
    • /
    • 2019
  • Recently, fluidic thrust vector control has become a core technique to control multifarious air vehicles, such as supersonic aircraft and modern rockets. Fluidic thrust vector control using the shock vector concept has many advantages for achieving great vectoring performance, such as fast vectoring response, simple structure, and low weight. In this paper, computational fluid dynamics methods are used to study a three-dimensional rectangular supersonic nozzle with a slot injector. To evaluate the reliability and stability of computational methodology, the numerical results were validated with experimental data. The pressure distributions along the upper and lower nozzle walls in the symmetry plane showed an excellent match with the test results. Several numerical simulations were performed based on the shear stress transport(SST) $k-{\omega}$ turbulence model. The effect of the momentum flux ratio was investigated thoroughly, and the performance variations have been clearly illustrated.

Exact solver of Saint-Venant system with discontinuous geometry (불연속 지형조건에 대한 Saint-Venant 방정식의 정해법)

  • Jung, Jaeyoung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.256-256
    • /
    • 2021
  • Saint-Venant 방정식은 수평규모가 수심규모보다 큰 천수흐름을 기술하는 수리동역학 모형으로 지난 수십년간 공학적 분야에서 널리 이용되어 왔다. 최근에도 기후변화에 따른 도시 홍수의 위기 증대로 홍수위기관리의 관심이 높아짐에 따라 홍수파(flood wave), 도시침수(urban inundation), 돌발홍수(flash flood) 등의 신속한 예측을 위한 Saint-Venant 방정식의 연구가 활발히 진행되고 있다. 그러나 도시와 같은 인공구조물이 즐비한 상황에서 천수흐름을 해석하는 고전적인 수치해법들은 다양한 불연속 지형들의 존재로 인하여 불안정하며 지배방정식의 정해로 수치해가 잘 수렴하지 않는 문제가 있다. 지난 수년간 이를 해결하기 위해 불연속한 지형을 안정적으로 해결할 수 있는 수치기법의 연구가 진행되어 왔으나, 정해로의 수렴성, 정확성에 관하여 연구가 부족한 실정이다. 본 연구는 수치해법의 주요 구조를 구성하는 Saint-Venant 방정식의 불연속한 지형조건에 대한 리만 문제의 정해를 연구하였다. 쌍곡선형 시스템의 특징을 고려하여 요소파들(elementary waves)의 공식을 유도하였는데, 질량과 에너지의 보존법칙에 위배되지 않으며 운동량이송부의 비선형성과 지형의 불연속에 의한 비엄격성을 고려할 수 있는 조건을 제시하였다. 또한, 유도된 요소파들을 바탕으로 L-M & R-M 커브이론(Han et al. 2014)을 사용할 수 있는 조건과 당위성을 증명하였고, 이를 바탕으로 Saint-Venant 방정식의 정해법을 구성하였다. 리만문제의 다양한 초기조건들을 바탕으로 모든 경우의 정해 구조를 조사하였고, 이를 통해 불연속 지형에 대한 Saint-Venant 지배방정식의 정해가 다수해를 갖을 수 있음을 보였으며, 이를 근사할 수 있는 수치기법의 전략을 소개하였다.

  • PDF

Time-domain Geoacoustic Inversion of Short-range Acoustic Data with Fluctuating Arrivals (시변동이 있는 근거리 음향신호의 시간영역 지음향학적 역산)

  • Park, Cheolsoo;Seong, Woojae;Gerstoft, Peter;Hodgkiss, William S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.308-316
    • /
    • 2013
  • A set of experiments (Shallow Water 2006, SW06) was carried out in shallow water near the New Jersey shelf break in summer 2006. Significant fluctuations in direct and surface reflected arrivals were observed from the chirp data (1100~2900 Hz) measured on a vertical line array. This paper presents a geoacoustic inverssion technique for short-range acoustic data with fluctuating arrivals and inversion results of experimental data. In order to reduce effects of random sea surface on the inversion, the acoustic energy back-propagated from the array to the source through direct and bottom-reflected paths is defined as the objective function. A multi-step inversion scheme is applied to the data using VFSR (Very Fast Simulated Reannealing) optimization technique. The inversion results show a source depth oscillation period equal to the measured ocean surface wave period. The inverted bottom sound speed is 1645 m/s and is similar to that estimated by other work at the same site.

Study on the Motion of Floater Structure for Design of Wave Energy Generation in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 거동에 관한 연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Park, Young-Kyu;Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.632-639
    • /
    • 2011
  • In order to design a wave energy generate system, a 6-Degree of freedom motion analysis technique was applied to the three-Dimensional CFD analysis on two floating body and the behavior was interpreted according to the nature of the incoming wave. The waves are generated by the same type of wave in the model of tank using the piston type, but due to the shallow water that is generated from the bottom of the wave energy is attenuated by Ekman boundary layer. According to the wavelength of waves generated by the result of evaluating the behavior of floating body, it is concluded that 0.3m is the maximum amplitude of wavelength of 5m, and 0.15m is the minimum amplitude of wavelength of 1m. 1.06m is the maximum distance between the two floaters of wavelength of 6m.

An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin (3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.93-99
    • /
    • 2022
  • Analytical solutions for regular waves generated by bottom wave makers in a 3-dimensional wave basin were derived in this study. Bottom wave makers which have triangular, rectangular and combination of two shapes were adopted. The 3-dimensional velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions in a wave basin. Then, analytical solutions of 3-dimensional particle velocities and free surface displacement were derived from the velocity potential. The solutions showed physically valid results for regular waves generated by bottom wave makers in a wave basin. The analytical solution for obliquely propagating wave generation from bottom wave maker which works like a snake was also derived. Numerical results of the solution agree well with theoretically predicted results.