• Title/Summary/Keyword: 운동량보간법

Search Result 3, Processing Time 0.016 seconds

On the Use of Momentum Interpolation Method for flows Involving A Large Body force (바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

A Study on the Use of Momentum Interpolation Method for Flows with a Large Body Force (바디포오스가 큰 유동에서 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.8-16
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation method for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. The origins of problems of the momentum interpolation methods are the validity of linear assumptions employed for the evaluation of the cell-face velocities, the enforcement of mass conservation for the cell-centered velocities and the specification of pressure and pressure correction at the boundary. Numerical experiments are performed for a typical flow involving a large body force. The numerical results are compared with those by the staggered grid method. The fact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

Two-Dimensional Analysis of Convection-Dispersion Using Numerical Schme (수치기법을 이용한 확산 - 이송의 2차원 분석)

  • 신응배;서승원
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.201-214
    • /
    • 1987
  • 하천에서 종, 횡방향이 고려된 확산-이송 현상을 수치기법인 유한요소법을 이용하여 2차원으로 해석하였다. 유한요소법으로는 Galerkin의 가중잔차 방법을 수십에 대해 적분을 취한 연속, 운동량 및 확산-이송방정식에 적용하였고, 선형보간함수와 선형삼각형요소가 이용되었다. 모형의 타당성을 입증하기 위해 단순화된 1차원 수로에서 수차례 검정한 결과 정확해와 거의 일치하는 만족할만한 결과가 도출되었다. 개발된 모형의 실험이 2차원수로에서 행하여져 지류의 유입에 따른 확산-이송현상이 모의되었으며, 실험적용은 개발사업후의 한강본류 9km 구간에 적용되어 탄천과 중량천의 지천 영향을 받는 오염 농도가 2차원적으로 도시되었다.

  • PDF