• Title/Summary/Keyword: 우주잔해

Search Result 22, Processing Time 0.024 seconds

MEASUREMENTS OF ALBEDO AND SPECTRAL PATTERNS OF MAN-MADE SATELLITE MATERIALS (인공위성 재질별 반사율 및 분광유형 측정)

  • 이동규;김상준;이준호;한원용;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.319-326
    • /
    • 2002
  • Laboratory tests have been carried out for investigation of the spectroscopic characteristics at visible wavelength of 12 common satellite materials used in satellite bus and payload. The obtained spectral data show that the materials can be classified and identified since their spectral features and albedos distinctly differ among them. It is suggested that the result of the laboratory tests for the satellite materials can be used for the predictions of material types, material composition ratios, sizes, and masses in comparison with the spectral data obtained from observations of new satellites or space debris.

"우주물체 전자광학 감시체계 기술개발" 소개

  • Park, Jang-Hyeon;Choe, Yeong-Jun;Jo, Jung-Hyeon;Im, Hong-Seo;Mun, Hong-Gyu;Park, Jong-Uk;Choe, Jin;Kim, Jae-Hyeok;Jo, Gi-In
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.130.1-130.1
    • /
    • 2011
  • 인류의 우주공간에 대한 영향력이 확대됨에 따라, 우주공간에서의 인위적인 활동에 영향을 미칠 수 있는 모든 종류의 상황들에 대한 이해가 최근 전 세계적으로 매우 중요한 이슈로 부상하고 있다. 이를 Space Situational Awareness (SSA)라고 하는데, 특히 근지구공간에서의 인위적, 자연적 우주물체는, 우주발사체의 지속적인 증가와 이리듐-코스모스 위성의 상호 충돌 및 중국 폐기위성 파괴 등과 같은 사건으로 기하급수적으로 증가된 우주물체의 개체수로 인해 대한민국 국적의 모든 위성에도 실제적인 위협 요인으로 대두되고 있다. 이에 기초 기술연구회와 한국천문연구원은 이러한 위협을 국가적으로 해결해야할 과제(National Agenda Project) 중의 하나로 정의하고, 이를 해결하기 위해 우주물체 전자광학 감시체계 기술개발(OWL; Optical Wide-field patroL) 사업을 시작하였다. 이 사업의 목표는 자국위성에 대한 궤도력을 독자적으로 유지할 수 있는 시스템을 개발하는 것이며, 이를 위하여 2011년부터 6년 동안 총 5개소의 해외 관측소에 50cm급 광시야 망원경을 각각 설치하여 자국위성을 자동으로 상시관측하고, 관측된 자료를 이용한 궤도계산을 통하여 독자적으로 궤도력을 유지할 계획이다. 또한, 우주잔해물 감시는 하나의 국가에서 단독으로 할 수 없기 때문에 2m급 우주물체 감시망원경을 개발하여 국제공동으로 진행할 계획이다. 사업 첫해인 2011년 4월 시스템 요구사항 분석을 완료하였고 10월말 시스템 기본설계를 완료할 예정이다. 최종 완성될 소구경 광시야 망원경과 우주물체 감시망원경의 주요 임무는 우주물체 관측이지만, 향후 광시야를 이용한 다양한 탐사천문학에도 기여할 수 있을 것으로 기대한다. 한편, 자국위성에 대한 충돌 위험도 분석 및 회피기동에 관한 연구는 한국항공우주연구원이 이 사업의 협동연구로 참여하고 있다.

  • PDF

Operation of Official Satellite Re-entry Monitoring Room in Korea (국내 위성추락상황실 운영)

  • Jo, Jung Hyun;Choi, Young-Jun;Yim, Hong-Suh;Choi, Jin;Son, Ju-Young;Jeon, Hyun-Seock;Bae, Young-Ho;Moon, Hong-Kyu;Kim, Myung-Jin;Park, Jang-Hyun;Lim, Yeo-Myeong;Kim, Ji-Hye;Hyun, Sung-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.150-158
    • /
    • 2013
  • In Korea, the official monitoring of the atmospheric re-entry of satellites or space debris was initiated by the first operation of a re-entry situation analysis team for the 'Cosmos 1402' of the Soviet Union, which main body re-entered on January 23, 1983 and radio active core re-entered on February 7, 1983. After this incident, a task force team consisting Korea Astronomy and Space Science Institute (KASI), Korea Aerospace Research Institute (KARI) and other related institutes operated a situation monitoring group under the supervision of the Ministry of Science and technology (MOST) for the controlled re-entry of the Russian 'Mir' space station in 2001. The re-entry of the upper atmospheric weather satellite 'UARS' of United States had been monitored and analyzed by KASI on September 24, 2011. As the re-entry of the space object has been frequently occurred, the government officials and the experts from MEST (Ministry of Education, Science and Technology), KASI, KARI had an urgent official meeting to establish a satellite re-entry monitoring room in KASI and to give an operational authority to KASI in September 14, 2011. Under this decision, the satellite re-entry monitoring room in KASI has successfully executed the monitoring, data analyzing, official reporting, media contacting, and public announcing for the German satellite 'Roentgen' in October 2011, Russian space explorer 'Phobos-Grunt' in January 2012, Russian satellite 'Cosmos 1484' in January 2013, and European geodetic satellite 'GOCE' in November 2013 with the support from the Korean Air Force and KARI.

AUTOMATED STREAK DETECTION FOR HIGH VELOCITY OBJECTS: TEST WITH YSTAR-NEOPAT IMAGES (고속이동천체 검출을 위한 궤적탐지 알고리즘 및 YSTAR-NEOPAT 영상 분석 결과)

  • Kim, Dae-Won;Byun, Yong-Ik;Kim, Su-Yong;Kang, Yong-Woo;Han, Won-Yong;Moon, Hong-Kyu;Yim, Hong-Suh
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • We developed an algorithm to efficiently detect streaks in survey images and made a performance test with YSTAR-NEOPAT images obtained by the 0.5m telescope stationed in South Africa. Fast moving objects whose apparent speeds exceed 10 arcsec/min are the main target of our algorithm; these include artificial satellites, space debris, and very fast Near-Earth Objects. Our algorithm, based on the outline shape of elongated sources employs a step of image subtraction in order to reduce the confusion caused by dense distribution of faint stars. It takes less than a second to find and characterize streaks present in normal astronomical images of 2K format. Comparison with visual inspection proves the efficiency and completeness of our automated detection algorithm. When applied to about 7,000 time-series images from YSTAR telescope, nearly 700 incidents of streaks are detected. Fast moving objects are identified by the presence of matching streaks in adjoining frames. Nearly all of confirmed fast moving objects turn out to be artificial satellites or space debris. Majority of streaks are however meteors and cosmic ray hits, whose identity is often difficult to classify.

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.

Design of L-Band-Phased Array Radar System for Space Situational Awareness (우주감시를 위한 L-Band 위상배열레이다 시스템 설계)

  • Lee, Jonghyun;Choi, Eun Jung;Moon, Hyun-Wook;Park, Joontae;Cho, Sungki;Park, Jang Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.214-224
    • /
    • 2018
  • Continuous space development increases the occurrence probability of space hazards such as collapse of a satellite and collision between a satellite and space debris. In Korea, a space surveillance network with optical system has been developed; however, the radar technology for an independent space surveillance needs to be secured. Herein, an L-band phased array radar system for the detection and tracking of space objects is proposed to provide a number of services including collision avoidance and the prediction of re-entry events. With the mission analysis of space surveillance and the case analysis of foreign advanced radar systems, the radar parameters are defined and designed. The proposed radar system is able to detect a debris having a diameter of 10 cm at a maximum distance of 1,576 km. In addition, we confirmed the possibility of using the space surveillance mission for domestic satellites through the analysis of the detection area.

Development of De-orbiter using Drag-sail (가항력돛을 이용한 궤도이탈장치 개발)

  • Choi, Junwoo;Kim, Si-on;Lee, Joowan;Yun, Tae-gook;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, we design and fabricate a de-orbiter using drag-sail and evaluate deployment characteristics. Without employing an actuator to deploy, the de-orbiter is activated by the SMA wire based the release mechanism and driven by the restoring force of the tape-spring. For efficient storage and deployment of drag-sail, an origami method of original ISO flasher is chosen and low priced mylar film is used as the material of the drag-sail. In addition, through the fault tree analysis method which is one of the one-shot device reliability evaluation methods, we confirm the reliability of the de-orbiter(0.997572) and the Roller failure has the highest criticality. Finally, we find feasibility of the proposed de-orbiter through the deployment demonstration of drag-sail.

Mission Analysis Involving Hall Thruster for On-Orbit Servicing (궤도상 유지보수를 위한 홀추력기 임무해석)

  • Kwon, Kybeom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.791-799
    • /
    • 2020
  • Launched in October 2019, Northrop Grumman's MEV-1 was the world's first unmanned mission demonstrating the practical feasibility of on-orbit servicing. Although the concept of on-orbit servicing was proposed several decades ago, it has been developed to various mission concepts providing services such as orbit change, station keeping, propellant and equipment supply, upgrade, repair, on-orbit assembly and production, and space debris removal. The historical success of MEV-1 is expected to expand the market of on-orbit servicing for government agencies and commercial sectors worldwide. The on-orbit servicing essentially requires the utilization of a highly propellant efficient electric propulsion system due to the nature of the mission. In this study, the space mission analysis for a simple on-orbit mission involving Hall thruster is conducted, which is life extension mission for geostationary orbit satellites. In order to analyze the mission, design space exploration for various Hall thruster design variable combinations is performed. The values of design variables and operational parameters of Hall thruster suitable for the mission are proposed through design space analysis and optimization, and mission performance is derived. In addition, the direction of further improvement for the current on-orbit mission analysis process and space mission analysis involving Hall thruster is reviewed.

The Problem of Space Debris and the Environmental Protection in Outer Space Law (우주폐기물과 지구 및 우주환경의 보호)

  • Lee, Young Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.205-237
    • /
    • 2014
  • Last 50 years there were a lot of space subjects launched by space activities of many states and these activities also had created tremendous, significant space debris contaminating the environment of outer space. The large number of space debris which are surrounding the earth have the serious possibilities of destroying a satellite or causing huge threat to the space vehicles. For example, Chinese anti-satellite missile test was conducted by China on January 11, 2007. As a consequence a Chinese weather satellite was destroyed by a kinetic kill vehicle traveling with a speed of 8 km/s in the opposite direction. Anti-satellite missile tests like this,contribute to the formation of enormous orbital space debris which can remain in orbit for many years and could interfere with future space activity (Kessler Syndrome). The test is the largest recorded creation of space debris in history with at least 2,317 pieces of trackable size (golf ball size and larger) and an estimated 150,000 debris particles and more. Several nations responded negatively to the test and highlighted the serious consequences of engaging in the militarization of space. The timing and occasion aroused the suspicion of its demonstration of anti-satellite (ASAT) capabilities following the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris. Therefore this breakup seemed to serve as a momentum of the UN Space Debris Mitigation Guidelines and the background of the EU initiatives for the International Code of Conduct for Outer Space Activities. The UN Space Debris Mitigation Guidelines thus adopted contain many technical elements that all the States involved in the outer space activities are expected to observe to produce least space debris from the moment of design of their launchers and satellites until the end of satellite life. Although the norms are on the voluntary basis which is normal in the current international space law environment where any attempt to formulate binding international rules has to face opposition and sometimes unnecessary screening from many corners of numerous countries. Nevertheless, because of common concerns of space-faring countries, the Guidelines could be adopted smoothly and are believed faithfully followed by most countries. It is a rare success story of international cooperation in the area of outer space. The EU has proposed an International Code of Conduct for Outer Space Activities as a transparency and confidence-building measure. It is designed to enhance the safety, security and sustainability of activities in outer space. The purpose of the Code to reduce the space debris, to allow exchange of the information on the space activities, and to protect the space objects through safety and security. Of the space issues, the space debris reduction and the space traffic management require some urgent attention. But the current legal instruments of the outer space do not have any binding rules to be applied thereto despite the incresing activities on the outer space. We need to start somewhere sometime soon before it's too late with the chaotic situation. In this article, with a view point of this problem, focused on the the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris and tried to analyse the issues of space debris reduction.

FIMS WAVELENGTH CALIBRATION VIA AIRGLOW LINE OBSERVATIONS (대기광 관측을 통한 과학기술위성 1호 원자외선분광기(FIMS)의 파장 보정)

  • Lee, Dae-Hee;Seon, Kwang-Il;Park, Jang-Hyun;Jin, Ho;Yuk, In-Soo;Nam, Uk-Won;Han, Won-Yong;Park, Jae-Woo;Lee, Ji-Na;Ryu, Kwang-Sun;Min, Kyoung-Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.391-398
    • /
    • 2004
  • Far-ultraviolet Imaging Spectrograph (FIMS) is the main payload of the Korea's first scientific micro satellite STSAT-1, which was launched at Sep. 27 2003 successfully. Major objective of FIMS is observing hot gas in the Galaxy in FUV bands to diagnose the energy flow models of the interstellar medium. Supernova remnants, molecular clouds, and Aurora emission in the geomagnetic pole regions are specific targets for pointing observation. Although the whole system was calibrated before launch, it is essential to perform on-orbit calibration for data analysis. For spectral calibration, we observed airglow lines in the atmosphere since they provide good spectral references. We identify and compare the observed airglow lines with model calculations, and correct the spectral distortion appeared in the detector system to improve the spectral resolution of the system.