• Title/Summary/Keyword: 우수차단 시스템

Search Result 73, Processing Time 0.017 seconds

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Development of Domestic Rainwater Treatment System and its Application in the Field (소규모 빗물처리시설 개발 및 현장 적용성 평가 연구)

  • Pak, Gijung;Park, Minseung;Kim, Hwansuk;Lim, Yoonsoo;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • The increase of impervious area in cities caused the unbalanced water cycle system and the accumulated various contaminants, which make troubles as introducing into watershed. In Korea, most of rainfall in a year precipitate in a summer season. This indicate that non-point source pollution control should be more important in summer and careful rainfall reuse strategy is necessary. Accordingly, the aim of this study is to monitor the characteristics of rainfall contaminants harvested in roofs and to develop the rainfall treatment system which are designed to fit well in a typical domestic household including rain garden. The rain garden consists of peatmoss, gravel and san to specially treat the initial rainfall contaminants. For this purpose, lab scale experiments with synthetic rainfall had been conducted to optimize the removal efficiency of TN, TP and CODcr. After lab scale experiments, field scale rainfall treatment system installed as a pilot scale in a field. This system has been monitored during June to July in 2015 in four time rainfall events as investigating the function of time, rainfall, and pollutant concentrations. As results, high loading of pollutants were introduced to the rainfall treatment system and its removal efficiency is increased as increase of pollutant concentrations. Since it is common that the mega-size of rainfall treatment system is not attractive in urban area, small scale rainfall treatment system is promising to treat the non-point source contaminants from cities. In addition, this small scale rainfall treatment system could have a potential to water resue system in islands, which usually suffer the shortage of water.

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.