• Title/Summary/Keyword: 우수이용 시스템

Search Result 3,104, Processing Time 0.041 seconds

Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter (적응성 가중메디안 필터를 이용한 방사선 투과영상의 양자 잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.465-473
    • /
    • 2002
  • Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods.

Seismic Behavior of Non-Seismic Concentrically Braced Frames with Shared Shear tab (쉬어탭 공유 접합부를 갖는 비내진중심가새골조의 내진거동)

  • Yeom, Hee Jin;Jung, Eun Bi;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.323-332
    • /
    • 2015
  • Special concentrically braced frames(SCBFs) have distinctive advantages in considerable seismic performance, which make engineers widely use SCBFs as lateral-load resisting systems in buildings and have researchers to develop SCBFs design methods. Compared to the extensive research of SCBF, comparatively little information is currently available on the performance of SCBFs designed and constructed before the early 1990's. Prior to 1988, concentrically braced frames(CBFs) design requirements were substantially less restrictive. As a result, many existing structures designed to these requirements may not ensure ductility and pose a significant concern in current buildings. In this study, these older frames are referred as non-seismic braced frames(NCBFs). In order to investigate the seismic behavior of NCBFs, finite-element(FE) models of SCBF and NCBF were suggested and verified using case investigation of NCBF conducted on the University of Washington. Using these models, the seismic behavior of NCBF with shared welding shear tab, which is the representative of the types of connections, was established and compared with the seismic performance of SCBF.

Design of Reconfigurable Coprocessor for Multimedia Mobile Terminal (멀티미디어 무선 단말기를 위한 재구성 가능한 코프로세서의 설계)

  • Kim, Nam-Sub;Lee, Sang-Hun;Kum, Min-Ha;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.63-72
    • /
    • 2007
  • In this paper, we propose a novel reconfigurable coprocessor for multimedia mobile terminals. Because most of multimedia operations require fast operations of large amount of data in the limited clock frequency, it is necessary to enhance the performance of the embedded processor that is widely used in current multimedia mobile terminals. Therefore, we proposed and have designed the coprocessor which had the ability of fast operations of multimedia data. The proposed coprocessor was not only reconfigurable, but also flexible and expandable. The proposed coprocessor has been designed by using VHDL and compared with previous reconfigurable coprocessors and a commercial embedded processor in architecture and speed. As a result of the architectural comparison, the proposed coprocessor had better structure in terms of hardware size and flexibility. Also, the simulation results of DCT application showed that the proposed coprocessor was 26 times faster than a commercial ARM processor and 11 times faster than the ARM processor with fast DCT core.

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.

Experimental Study of Small Vertical Axis Wind Turbine according to Type of Blades (블레이드 형태에 따른 소형 수직축 풍력발전기의 실험적 연구)

  • Lee, Min-Gu;Oh, Hun;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.88-92
    • /
    • 2017
  • Owing to the depletion of fossil energy, wind power is attracting attention as a promising environmentally friendly alternative energy source, because it is abundant, renewable, and non-polluting. Wind turbines are divided into horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) according to the direction of the rotating shaft. VAWTs have a low power generation efficiency, but are not affected by the wind direction and, thus, no yaw system is required and their structure is simple. Small VAWTs are attracting much attention because they can generate power even at low wind speeds. In this study, the output voltages and output currents of small VAWTs with gyromill type, hinge type and double door type blades capable of generating power even at low wind speeds were analyzed at variable wind speeds in the range of 1~11 m/s. At the maximum wind speed of 11m/s, the application of the double door type blades achieved 67% and 9% higher wind turbine output voltages than that of the gyromill type and hinge type blades, respectively. As regards the wind turbine output currents, the application of the double door type blades gave rise to 93% and 5% higher results than that of the gyromill type and hinge type blades, respectively. Through this study, the excellent output characteristics and commercialization potential of the double door type blades, which can generate power both at low and high wind speeds, were confirmed.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

Development and optimization of C-11 gas target system in KOTRON-13 cyclotron (KOTRON-13 사이클로트론의 고효율C-11 가스 표적장치)

  • Lee, Hong-Jin;Lee, Won-Kyeong;Park, Jun-Hyung;Moon, Byung-Seok;Lee, In-Won;Chae, Sung-Ki;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Purpose: The KOTRON-13 cyclotron was developed in South Korea and was introduced to regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce carbon-11 isotope so far. We herein study how to develop and optimize an effective carbon-11 target system in the KOTRON-13 cyclotron by changing cooling system, combing with fluorine-18 target and evaluating beam currents. Materials and Method: To develop the optimal carbon-11 target and an effective cooling system, we designed the carbon-11 target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we evaluated the yield of carbon-11 production at different beam currents and the stability of the operation of the KOTRON-13 cyclotron. Results: The production of carbon-11 was enhanced from about 1.700 mCi ($50{\mu}A$) to 2,000 mCi ($60{\mu}A$) on the carbon-11 target which developed by seoul national university bundang hospital (SNUBH) and Samyoung Unitech. Additionally, the cooling condition was showed stable to produce carbon-11 under high beam current. Conclude: The carbon-11 target system of the KOTRON-13 cyclotron was successfully developed and improved carbon-11 production. Consequently, the operation of carbon-11 target system was highly effective and stable compare with other commercial cyclotrons. Our results are believed that this optimal carbon-11 target system will be helpful for the routine carbon-11 production in the KOTRON-13 cyclotron.

  • PDF