• Title/Summary/Keyword: 우기

Search Result 914, Processing Time 0.027 seconds

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

Flora of Vascular Plants of Mt. Deokhangsan Protected Area in Samcheok-si for Forest Genetic Resource Conserv ation in Baekdudaegan, Korea (백두대간 덕항산(삼척시) 산림유전자원보호구역의 관속식물상)

  • Kim, Se-Chang;Seo, Han-Na;Ahn, Chi-Ho;Park, Wan-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • In this study, the vascular plants of the Mt. Deokhangsan protected area were surveyed for the purpose of forest genetic resources conservation in Gangwon-do, South Korea. The flora on Mt. Deokhangsan were classified as follows 537 taxa, 90 families, 302 genera, 479 species, 4 subspecies, 51 varieties, and 3 forms. Among the taxa, 19 were Korean endemic plants and 17 were rare and endangered plants. Plants as indicators of limestone areas were found in 33 taxa. Naturalized plants were found in 27 taxa and species threatened by climate change were found in 33 taxa, including 11 endemic plant taxa and 22 northern plant taxa. Plants endemic to Korea and northern plants were mainly found at the study site, whereas southern plants were not found. Thus, Mt. Deokhangsan apparently has an environment suitable for the growth of northern plants.

Production of Transgenic Bovine Embryos Following Nuclear Transfer of Bovine Fetal Fibroblasts Transfected by Foreign Genes (외래유전자를 도입한 소 태아세포의 핵치환에 의한 형질전환 소 수정란 생산)

  • Kil, K.S.;Uhm, S.J.;Kim, E.H.;Chung, H.J.;Kim, T.;Park, H.;Lee, H.T.;Chung, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.429-437
    • /
    • 2000
  • This study investigated the successful introduction of genes of erythropoietin (EPO) and enhanced green fluorescent protein (EGFP) in bovine embryos following nuclear transfer of bovine fetal fibroblasts (bFF), which were transfected by retrovirus vector system. Non-starved bFF were, transferred into perivitelline space of enucleated oocytes. The bFF-oocyte units were accomplished by cell to cell fusion and activated with calcium inophore and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CRlaa medium for 8 days. Out of 187 (EPO) and 210 (EGFP) bovine eggs reconstructed by nuclear transfer, 149 (EPO : 80.0%) and 158 (EGFP : 75.2%) embryos were cleaved, and among them 36 (EPO : 24.2%) and 35 (EGFP : 22.2%) embryos developed to the blastocyst stage. Of these blastocysts, 100% integration of EPO gene in 36 embryos was determined by PCR, and 100% expression of EGFP gene in 35 embryos was observed under the fluorescent microscope. This result indicates that bovine oocytes reconstructed by nuclear transfer of transfected bFF can successfully develop to the blastocyst stage. Furthermore, this novel procedure may be presumably an attractive method efficiently to produce the transgenic cattles.

  • PDF

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

The Status of Maize Production and Distribution in Cambodia (캄보디아 옥수수 생산 및 유통현황 연구)

  • Lee, Kyu-Seong;Park, Ji-Won;Kim, Eun-Ji;Son, Beom-Young;Kim, Wook-Han
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.513-519
    • /
    • 2011
  • In recent, the cultivation of maize in the world is being increased as a feed for the animal due to the increase of the large amount of meat consumption. However, reduction of supply for the feeding maize by the natural disaster such as drought, flooding, and demanding materials for bioenergy are attributed to increase the cereal price of the world that caused for the fluctuation of prices. The research has been done to provide useful information to the Korean agricultural investor regarding the current status of maize production and distribution in Cambodia. The maize cultivation of Cambodia in 2009 presented as a second major crop at the area of 6.8% in the total crop production area, and it continuously increased maize production yearly basis for the internal uses as well as for the exportation. The total amount of production showed by amount of 0.92 million tons due to the increased production of unit area. The yield production of unit area in current shows about 4 tones per hectare. About 90% of total production produced during August to September at wet season, and area of Batambang province produced about 70% of the total production. The production of feeding maize cultivated about 70% of the total cultivation area, and the exportation have done around 60% and remains were consumed as a domestic uses. The prospects of maize production in Cambodia will be increased due to the acceleration of livestock industry as 8.7% of annual growth rate.

A Study of the Effectiveness of Habitat for Humanity Korea's Disaster Risk Reduction Interventions: Focusing on the Mental Health of Residents of a Perennially Flooded Area in Southern Bangladesh (한국 해비타트의 재난위기경감 개입 효과성 연구: 방글라데시 남부 상습 침수지역 거주민의 정신건강 실태를 중심으로)

  • Suyeon Lee;Eunseok Seo;Goosoon Kwon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.788-805
    • /
    • 2023
  • Purpose: This study aimed to verify the impact of Habitat for Humanity Korea's disaster risk reduction intervention on the mental health and satisfaction with life among residents of southern Bangladesh who had constantly suffered from disaster stress due to perennial flooding. Method: The target group was 138 residents who were pre-surveyed in August 2020 and post-surveyed in November 2021. The interventions consisted of individual incremental housing, public facilities for evacuation, and disaster response training for capacity development. The data were analysed using paired sample t-tests for pre-post changes and one-way analysis of variance to identify differences between treatment groups. Result: The results showed significant improvements in residents' depression, anxiety, somatisation and satisfaction with life after the intervention, with significant differences in mental health levels between the intervention treatments. Specifically, relatively higher disaster mitigation effects were found for individual infrastructure improvements and employment facilities compared to disaster response drills. Conclusion: These results demonstrate the positive role of Habitat for Humanity Korea's disaster risk reduction interventions on the mental health recovery of disaster victims and suggest practical approaches that can be applied in disaster risk areas.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

A Study on the Stability of Slopes Reinforced with Panel-Type Retaining Walls (대절토부 사면의 패널식 옹벽보강에 따른 안정성 검토)

  • Dong-wook Choi;Jun-o Park;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • Various innovative technologies and methods are being applied to ensure the stability of steep rock slopes. However, there are design limitations concerning site ground conditions, leading to discrepancies between the designed and actual ground conditions during construction. In the case of the retaining wall in Yeosu, where the study area is located, although the construction of a 5-stage retaining wall is planned, at the current completion of the second stage, cracks on the upper part of the wall, settlement in the front of the wall, and seepage have been observed. After the completion of stages one and two, issues regarding cracks and settlement on the upper part of the wall and seepage in the front of the wall were discovered. Thus, there was a need to reevaluate the results of the existing stability assessment. It was confirmed that the issue was due to groundwater leakage, attributed to the lack of clear assessment of the colluvial soil layer during the initial design stage. Therefore, to conservatively reflect groundwater level conditions, a groundwater level contour was positioned at the top of the wall to conduct a slope stability assessment. The assessment results indicated that the safety factor during the rainy season exceeded the required value of 1.3, with a calculated safety factor of 1.31. However, during seismic events, the safety factor was determined to be 1.12, falling short of the required safety factor of 1.3. Therefore, it is suggested that the existing retaining walls constructed during stages one and two undergo reinforcement using methods such as micro-piles with grouting, and additional work should be carried out to ensure a clear assessment of the colluvial soil layer.