• 제목/요약/키워드: 용착금속부

검색결과 46건 처리시간 0.021초

EGW 용착금속의 저온인성 특성 (Characteristics of Low Temperature Toughness on EGW Weld Metal)

  • 서준석;이창희;유회수;김희진
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.18-18
    • /
    • 2010
  • 최근에 건조되는 선박이나 구조물들은 점차 대형화 되어가고, 이에 사용되는 판재들은 점차 고강도 극후판재화 되어가고 있다. 극후판재의 용접성을 향상시키기 위해서는 대입열 용접이 주로 적용되고 있는 실정인데, 30 mmt 이상의 후판을 1 pass로 용접하기 위해서는 EGW(Electro-gas welding) 기법을 사용한다. 대입열 용접은 용접입열(heat input)이 매우 높아 용착금속과 열영향부의 냉각속도가 매우 느려 용접열영향부에서 특히 fusion line 근처의 열영향부는 결정립 조대화 및 취약한 미세조직을 형성함으로서 저온인성을 크게 저하시키고, 연화 현상(softening effect)을 발생시켜 강도가 저하되는 문제점이 주로 발생하였다. 하지만 이런 문제점을 해결하기 위해 대입열용접에 사용된는 강재의 미세조직을 제어하여 AlN, TiN, $TiO_2$ 등의 석출물을 이용한 용접열영향부의 저온인성을 향상시켰다. 이러한 문제점이 발생하는 대입열용접에서 저온인성 시험은 주로 fuison line + 1, 2mm에서 수행한다. 하지만 대입열 용접시 용착금속의 냉각속도도 매우 느리기 때문에 용착금속의 위치에 따라 저온 인성 특성이 다르게 나타날 수 있다. 본 연구에서는 EGW 용착금속의 위치에 따른 저온인성 특성을 평가하기 위해 EH-36N, 40mmt 판재를 사용하여 1pole EG 용접 하였다. 용착금속의 저온인성 특성을 평가하기위해 충격 시편의 노치 위치가 fusion line - 2mm와 용접부 중앙을 기준으로 4곳을 선정하여 충격시험을 수행하였다. 또한 용착금속의 경도 분포를 알아보기 위해 micro vickers hardness tester(mitutoyo UR-501)을 사용해 hardness mapping 시험을 하였다. 용착금속의 저온인성은 미세조직과, 산소량에 따라 변화 할 수 있기 때문에 용착금속 위치를 달리하여 미세조직과 산소량도 각각 분석하였다. 용착금속의 저온인성을 향상시킬 수 있는 침상형페라이트와 비금속개재물의 상관관계에 관해 검토 하였다.

  • PDF

700MPa급 용착금속의 미세조직에 따른 저온균열 감수성 (Cold Crack Susceptibility of 700 MPa welding Consumable According Microstructure)

  • 서준석;김희진;유회수;박형근;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.46-46
    • /
    • 2009
  • 과거 고강도강 용접부에서 발생하는 저온균열은 주로 용접열영향부에서 발생하였는데, 이러한 문제점을 해결하기 위하여 강재 메이커들은 고강도강의 용접성을 향상시키고자 노력하였다. 이러한 노력의 결과로 TMCP, HSLA 강 등이 개발되었고 이들 강재는 예열온도를 저하시킬 수 있다는 장점 때문에 보편화되어 사용되었다. 이러한 강재는 모재 예열온도를 기준으로 적용하게 되면 용착금속에서 저온균열이 발생하는 경우가 있다. 따라서 이제는 용접재료의 용접성, 즉 용접재료의 저온균열 저항성을 평가 할 수 있는 기법이 요구된다. 본 연구의 목적은 용착금속의 저온균열 저항성을 평가하는 것인데, 저온균열 저항성은 용착금속의 미세조직에 따라 다르게 나타날 수 있다. 용착금속의 합금조성은 기본적으로 용착금속에 요구되는 최저 강도와 충격인성을 만족할 수 있도록 설계한다. 하지만 유사한 강도의 유사한 합금조성이더라도 일부 합금 성분에 의해 용착금속의 미세조직들은 상이하게 나타날 수 있는데, 미세조직 특성에 의하여 용착금속의 강도와 저온인성이 결정된다. 용착금속의 저온균열 저항성을 평가하기위하여 Gapped Bead-on-Groove(G-BOG) 시험에 사용된 모재는 50mm 두께의 mild steel을 사용하였으며, 모재의 희석을 방지하기위해 15mm 깊이로 V-groove 가공 후 buttering 용접 하였다. 용접된 시편은 다시 5mm 깊이로 V-groove로 2차 가공 후 Ar + 20% $Co_2$ gas를 사용하여 용접하였다. 용접재료는 ER-100S-G grade로 비슷한 합금조성을 갖는 2 종류를 사용하였다. A용접재료는 Ti 이 0.1% 함유 되었으며, B용접재료는 Ti 함유되지 않은 것을 사용하였다. 또한 예열 온도에 따라 저온균열 감수성을 평가하기위하여 모재의 예열온도를 각각 상온, $50^{\circ}C,\;75^{\circ}C,\;100^{\circ}C$로 하여 실험을 진행하였다. 용착금속의 미세조직을 확인해본 결과 Ti 함유된 A 용착금속 미세조직은 대부분 침상형페라이트로 나타났으며, Ti 함유되지 않은 B 용착금속 미세조직은 대부분 베이나이트로 나타났다. G-BOG 시험 결과 Ti 함유된 A 시편이 Ti 함유되지 않은 B 시편보다 저온균열 발생량이 적었다. 이는 용착금속의 미세조직분포 및 특성에 따라 저온균열감수성이 다르다는 것을 나타낸다.

  • PDF

FCAW 용착금속의 기계적 성질에 미치는 Ni 함량의 영향 (Effect of Ni content on mechanical properties of deposited weld metal by FCAW)

  • 남성길;장태원;윤동렬;한정석;신혜선
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.118-120
    • /
    • 2005
  • 대형구조물 제작 시에는 세라믹백킹재 등 백킹재를 이용한 편면용접법이 많이 채용되고 있다. 이처럼 백가우징이 적용되지 않는 편면용접법으로 용접 시공 시, 표면부에 비해 루트부의 충격성능이 열화되는 경향이 있다. 본 연구에서는 세라믹백킹재를 채용한 편면용접법의 루트부의 저온 충격성능을 확보할 수 있는 용착금속의 Ni 함량에 대해 고찰하고자 한다.

  • PDF

고강도 GMA 용착금속의 충격인성에 미치는 Al의 영향 (Effects of Al Contents on Toughness of High Strength GMA Weld Metal)

  • 박형근;김희진;서준석;유회수;고진현
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.30-30
    • /
    • 2010
  • 고강도강의 용접성은 저온균열 저항성으로 대변되는데, TMCP강과 HSLA강 등이 개발되면서 고강도강의 저온균열저항성이 크게 향상되어 무예열 용접성이 확보되었다. 그러나 용접재료 측면에서는 그에 상응하는 재료의 개발이 지연되어 강재 개발로 인한 우수한 성능을 충분히 발휘하지 못하고 있으며 용접부의 건전성 문제가 심각하게 인식되고 있다. 이로 인해 고강도강에 적용시킬 수 있는 무예열 용접재료의 필요성이 대두되어 개발이 진행되고 있으며 상용화를 앞두고 있다. 이러한 용접재료의 개발단계에서 합금설계는 가장 중요한 항목으로 합금 조성에 따라 용착금속의 강도 및 인성에 상당한 변화를 가져오기 때문이다. 합금원소 중 Al은 강재의 탈산을 돕기 때문에 가능한 많은 양의 첨가를 요구하지만 적정량 이상을 초과하게 되면 오히려 용착금속의 저온인성 특성에 부정적인 영향을 미치게 된다. 본 연구에서는 고강도 GMA 용착금속의 Al함량을 단계적으로 변화시켜 용착금속 내 최적의 Al의 함량을 찾고자 하였다. 또한 높은 비용 및 많은 시간을 필요로 하는 와이어로드를 제작하지 않고도 Al함량을 조절 할 수 있는 방법을 고안하고자 하였다. 실험의 모재는 HSLA-100강을 사용하였으며 용접재료는 ER120S-G급의 GMA용접 재료를 사용하였다. 모재 성분과의 희석을 방지하기 위해 V-Groove 가공 후 6패스 Buttering 용접을 실시하였고, 다시 Buttering용접부에 V-Groove 가공을 하여 최종 용접을 실시하였다. 이 때 Al함량을 조절하기 위해 최종 용접 개선부 밑면에 홈을 판 후 Al fiber(직경 0.3mm)를 깔고 용접(입열량 20kJ/cm)하여 Al함유량을 총 3가지(0.003~0.04% Al)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 수행하여 저온인성과의 상관관계를 알아보았다.

  • PDF

알루미늄 합금 7075의 용가재에 따른 GTA용접공정의 기계적 특성 평가 (Evaluation of mechanical Characteristic according to the Filler Metal by GTA welding Process using 7075 Aluminum Alloy)

  • 손영산;임병철
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.521-526
    • /
    • 2017
  • 본 연구는 7075 알루미늄 합금의 용가재에 따른 GTA용접공정의 기계적 특성을 평가 하기위해 인장시험, 미세경도 시험과 같은 실험을 실시하였다. 방사선비파괴 시험 결과 KS D 0242규격의 1급의 기준에 만족하였으며 용가재에 따른 용접의 결함증가 등의 문제점은 없는 것으로 판단된다. 인장시험 결과 Al 7075를 용가재로 사용하였을 때에만 용접부에서 파단이 일어났으며 Al 7075, ER 4043의 용가재에 따른 인장강도는 각각 240MPa, 253MPa로 나타나며 항복강도는 각각 132MPa, 120MPa로 나타났으며 연신율은 각각 6.6%, 13%로 나타났다. 미세경도시험 결과 Al 7075를 용가재로 사용했을 때 용착금속부는 경화되어 Hv132로 나타났으며 ER 4043을 사용한 시편의 용착금속부의 경도는 각각 약 24% 감소하여 나타났다. Al 7075의 용접의 경우 같은 합금 조성의 용가재를 사용하여 용접 하면 용착금속부가 경화하여 용착금속부에서 파괴가 일어날 수 있으므로 같은 합금의 조성의 용가재를 사용하지 않는 것이 바람직하다. 위와 같은 실험을 통하여 7075 알루미늄합금의 용접시 같은 합금 조성의 용가재인 Al 7075를 사용하는 것 보다는 Al-Si계인 ER 4043을 용가재를 사용하는 것이 바람직하다.

천연가스배관 모재 및 용접부의 파괴인성에 관한 연구 (Study on the Fracture Toughness of Base Metal and Weldment of Natural Gas Pipeline)

  • 김철만;백종현;정현호;김우식
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1997년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.40-42
    • /
    • 1997
  • 1)X65배관의 심 및 원주용접 부분과 X42배관의 원주용접 부분에 대하여, 노치 위치 및 시험온도 변화에 따른 충격 및 파뢰인성 변화를 비교, 분석하였다. 2) 모든 경우에 용착금속부에 대한 충격 및 파괴인성이 가장 취약하게 나타났다.

  • PDF

API 5L X65 배관 모재 및 용접부 피로특성 평가 (Evaluation of fatigue poperties of base and weld metal for API 5L X65 pipeline)

  • 김철만;백종현;김우식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.44-48
    • /
    • 2001
  • API 5L X65 배관의 모재 기리 및 원주방향, 심용착금속, 원주용착금속에 대한 고주기피로시험 결과를 요약하면 다음과 같다. (1) 모재 길이방향이 원주방향보다 항복강도 및 항복비가 높게 나타난 압연 방향에 따라 피로특성이 다르게 나타났고, 항복비가 작아질수록 피로강도가 작아졌다. (2) 모재의 피로강도는 항복강도보다 높게 나타났지만 용착금속의 피로강도는 낮게 나타났다. (3) 용착금속은 모재보다 항복강도 및 인장강도가 상당히 높았지만 피로강도는 오히려 작게 나타났다.

  • PDF