• 제목/요약/키워드: 용접 평면 인식

검색결과 2건 처리시간 0.02초

자동 로봇 용접을 위한 Hand-Eye 레이저 거리 측정기 기반 용접 평면 인식 기법 (Hand-Eye Laser Range Finder based Welding Plane Recognition Method for Autonomous Robotic Welding)

  • 박재병;이성민
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.307-313
    • /
    • 2012
  • 본 논문은 자동 로봇 용접을 위한 Hand-Eye 레이저 거리 측정기 기반 용접 평면 인식 기법을 제안한다. 로봇 용접은 대상체의 형상에 의해 미리 정의된 용접선을 따라 금속 대상체를 용접 평면에 접합하는 과정이다. 따라서 성공적인 로봇 용접을 위해서는 용접 평면의 위치와 방향을 정확히 검출해야 한다. 만약 평면의 위치와 방향을 정확히 검출하지 못한다면 자동 로봇 용접은 실패하게 된다. 정밀한 용접 평면 인식을 위해 레이저 거리 측정기를 이용해 평면상의 직선을 검출한다. 레이저 거리측정기에 의한 직선 검출을 위해 Hough 변환을 적용한다. Hough 변환은 투표 방법을 기반으로 하기 때문에 센서의 측정 오차를 줄일 수 있다. 이 때 레이저 거리 측정기가 부착된 로봇 관절을 회전시켜 평면상의 두 개의 직선을 검출한 후 두 직선의 방향 벡터에 외적을 취해 평면의 방향을 인식한다. 제안된 방법의 실효성을 검증하기 위해 Simlab사에서 개발한 로봇 시뮬레이터인 RoboticsLab을 이용해 시뮬레이션을 수행한다.

용접결함의 패턴인식을 위한 디지털 신호처리에 관한 연구 (A Study on the Digital Signal Processing for the Pattern fiecognition of Weld Flaws)

  • 김재열;송찬일;김병현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1995
  • In this syudy, the researches classifying the artificial and natural flaws in welding parts are performed using the smart pattern recognition technology. For this purpose the smart signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing,feature extraction , feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear disciminant function classifier, the empirical Bayesian classifier. Also, the smart pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack,lack of penetration,lack of fusion,porosity,and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately learned the neural network classifier is better than ststistical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  • PDF