• Title/Summary/Keyword: 용접 평면 인식

Search Result 2, Processing Time 0.019 seconds

Hand-Eye Laser Range Finder based Welding Plane Recognition Method for Autonomous Robotic Welding (자동 로봇 용접을 위한 Hand-Eye 레이저 거리 측정기 기반 용접 평면 인식 기법)

  • Park, Jae Byung;Lee, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.307-313
    • /
    • 2012
  • This paper proposes a hand-eye laser range finder (LRF) based welding plane recognition method for autonomous robotic welding. The robot welding is the process of joining a metal piece and the welding plane along the welding path predefined by the shape of the metal piece. Thus, for successful robotic welding, the position and direction of the welding plane should be exactly detected. If the detected position and direction of the plane is not accurate, the autonomous robotic welding should fail. For precise recognition of the welding plane, a line on the plane is detected by the LRF. For obtaining the line on the plane, the Hough transform is applied to the obtained data from the LRF. Since the Hough transform is based on the voting method, the sensor noise can be reduced. Two lines on the plane are obtained before and after rotation of the robot joint, and then the direction of the plane is calculated by the cross product of two direction vectors of two lines. For verifying the feasibility of the proposed method, the simulation with the robot simulator, RoboticsLab developed by Simlab Co. Ltd., is carried out.

A Study on the Digital Signal Processing for the Pattern fiecognition of Weld Flaws (용접결함의 패턴인식을 위한 디지털 신호처리에 관한 연구)

  • 김재열;송찬일;김병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.393-396
    • /
    • 1995
  • In this syudy, the researches classifying the artificial and natural flaws in welding parts are performed using the smart pattern recognition technology. For this purpose the smart signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing,feature extraction , feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear disciminant function classifier, the empirical Bayesian classifier. Also, the smart pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack,lack of penetration,lack of fusion,porosity,and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately learned the neural network classifier is better than ststistical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  • PDF