• Title/Summary/Keyword: 용접 계면

검색결과 147건 처리시간 0.021초

다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응 (The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy)

  • 함종오;이지환
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성 (Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal)

  • 박성현;김기영;박종문;최인철;;오명훈
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가 (Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels)

  • 박상순;이상민;조용준;강남현;유지훈;김영석;박영도
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

다공질 SiC 반도체와 Ag계 합금의 접합 (Junction of Porous SiC Semiconductor and Ag Alloy)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.576-583
    • /
    • 2018
  • 탄화규소는 실리콘과 비교시 큰 에너지 밴드 갭을 갖고, 불순물 도핑에 의해 p형 및 n형 전도의 제어가 용이해서 고온용 전자부품 소재로 활용이 가능한 재료이다. 특히 ${\beta}$-SiC 분말로부터 제조한 다공질 n형 SiC 세라믹스의 경우, $800{\sim}1000^{\circ}C$에서 높은 열전 변환 효율을 나타내었다. SiC 열전 변환 반도체를 응용하기 위해서는 변환 성능지수도 중요하지만 $800^{\circ}C$ 이상에서 사용할 수 있는 고온용 금속전극 또한 필수적이다. 일반적으로 세라믹스는 대부분의 보편적인 용접용 금속과는 우수한 젖음을 갖지 못 하지만, 활성 첨가물을 고용시킨 합금의 경우, 계면 화학종들의 변화가 가능해서 젖음과 결합의 정도를 증진시킬 수 있다. 액체가 고체 표면을 적시면 액체-고체간 접합면의 에너지는 고체의 표면에너지 보다 작아지고 그 결과 액체가 고체 표면에서 넓게 퍼지면서 모세 틈새로 침투할 수 있는 구동력을 갖게 된다. 따라서 본 연구에서는 비교적 낮은 융점을 갖는 Ag를 이용해서 다공질 SiC 반도체 / Ag 및 Ag 합금 / SiC 및 알루미나 기판간의 접합에 대해 연구하였고, Ag-20Ti-20Cu 필러 메탈의 경우 SiC 반도체의 고온용 전극으로 적용 가능할 것으로 나타났다.

Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도 (Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate)

  • 신현필;안병욱;안지혁;이종근;김광석;김덕현;정승부
    • Journal of Welding and Joining
    • /
    • 제30권5호
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가 (Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel)

  • 김홍은;이기형;김민철;이호진;김경호;이창희
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

박형 기판의 사면 접합 공정 및 인장 특성 평가 (Scarf Welding of Thin Substrates and Evaluation of the Tensile Properties)

  • 강범석;나지후;고명준;손민정;고용호;이태익
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.102-110
    • /
    • 2023
  • 본 연구에서는 플렉서블 레이저 투과 용접 (flexible laser transmission welding, f-LTW)을 이용한 박형 기판의 사면 접합 (scarf welding) 공정을 개발하였다. 플렉서블 응용을 위해 경사면의 기울기에 따른 인장 강도의 거동을 조사하였다. 박형 기판으로써 100 ㎛ 이하 두께의 플라스틱 기판이 사용되었으며, 사면 접합을 위해서 기판의 말단에 경사면을 형성하는 지그 장치를 개발하였다. 플렉서블 고분자 기판에 대한 경사면 맞대기 접합을 개발함으로써 공정 후 접합부 두께가 증가하지 않는 유연 접합 기술 개발에 성공하였다. 단축 인장시험을 통해 접합부의 인장 강도를 평가하였으며, 그 결과 경사면의 기울기가 완만할수록 인장 강도가 증가함을 확인하였다. 경사각에 따른 접합 계면에서의 응력 분석을 수행하여 접합 구조 설계 인자를 규명하였다. 본 결과는 동일한 공정 조건에서 접합부의 형상에 따라서 인장 강도가 크게 달라질 수 있음을 시사하므로 접합 공정에서 접합부 형상을 고려하는 것에 대한 중요성을 확인할 수 있다.