• Title/Summary/Keyword: 용접연화

Search Result 37, Processing Time 0.025 seconds

Effect of Post Weld Heat Treatment on the Mechanical Properties of 2.25Cr-1Mo Steels Valves and Piping (용접후열처리가 2.25Cr-1Mo 강 밸브 및 배관재 물성에 미치는 영향)

  • Kim, Hongdeok;Lee, Yoseob;Lee, Jaegon;Lee, Kyoungsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • The effects of post weld heat treatment(PWHT) on the mechanical properties of 2.25Cr-1Mo steels were investigated. As the PWHT temperature or holding time increased, the strength of low alloy steels progressively decreased due to softening process. After the conventional PWHT, the strength was larger than the minimum value of materials specification. The Charpy impact energy was hardly affected by the conventional PWHT. The trend of mechanical properties was analyzed in terms of tempering parameter. Most materials replaced from a power plant met the requirements of materials specification except for one heat. Same heat of materials with low impact energy were attributed to the voids formed during casting process.

Effects of Upset Pressure on Weldability in the Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접 특성에 미치는 업셋압력의 영향에 관한 연구)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of upset pressure on friction weldability. Under the condition of friction time 0.8sec, upset pressure 150MPa, the tensile strength and Charpy impact value of the friction welded joint were 336MPa, $400KJ/m^2$ respectively. And highest temperature of the weld measured was below $800^{circ}K$ which is very lower than melting point of Cu($1356^{circ}K$). Under the same conditions, W grains picked up in Cu matrix from Cu-W profitably affected on these mechanical fracture, and were dispersed in Cu by plastic flow during brake time.

  • PDF

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Steels -Part II : Carbide Morphology- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 - Part II : 탄화물 형태 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • In repaired weldment of ASTM A-470 class 8 high pressure stream turbine rotor steel, creep rupture life was studied in relation with carbide morphology. Carbides were identified using carbide extraction replica method. A retired rotor has molybdenum rich carbide $M_2C$, lndacochea vanadium rich carbide $M_4C_3$, and chromium rich carbides $M_{23}C_6$and $M_7C_3$. Weldments ruptured at ICHAZ showed that some of carbides have been transformed into spherical types of coarsened carbides at ruptured area. Those carbides were revealed as molybdenum rich $M_6C$ carbide and they provided cavitation sites due to molybdenum depletion around $(M_6C)$ carbide. However coarsened $M_6C$ and $M_{23}C_6$ carbides were observed at ruptured area in case of ruptured at CGHAZ.

  • PDF

A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6 (Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구)

  • Baek, Sang-Yeob;Park, Kyung-Do;Kim, Won-Il;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials (이종재료 레이저 용접 판재의 저주기 피로 특성)

  • Kim Seog-Hwan;Kwak Dai-Soon;Kim Woong-Chan;Oh Taek-Yul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

Investigation of Regraphitization during Cam Shaft Remelting (캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구)

  • Oh, Young-Kun;Kim, Gwang-Soo;Koh, Jin-Hyun
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.648-652
    • /
    • 1998
  • TIG remelting was performed to harden the surface of automobile earn shaft. Multipass remelting was conducted in longitudinal direction under argon gas atmosphere. The microstructure of as-east earn shaft was gray iron which consisted of flake graphite and pearlitic matrix. The remelted area had microstructue of both fine pearlite and ledeburite structure that consisted of globular austenite and $Fe_3C$. Hardness for as-cast earn shaft had HRc 25~28, however it increased at remelted area to HRc 53~55. Black line was found at heat affected zone next to the fusion line, that is remelt area of previous pass, during multipass remelting. Black line was identified as graphite, which was transformed from $Fe_3C$. in the ledeburite structure. It is observed that all graphites were nucleated at $Fe_3C$. and matrix interface. High density energy laser remelting process was also applied to verify whether black line could be eliminated. However, black line was still existed as observed in TIG remelting process. Regraphitization was simulated on the ledeburitic structure specimen using Gleeble 1500 with conditions of 1100 and 100$0^{\circ}C$ for 0.5, I, 3, 5 and 1Osee. From the fact that graphite was formed even at the simulation condition of 100$0^{\circ}C$ for 0.5sec, it is seen that regraphitization is an inevitable phenomenon generated whatever processes used during multipass overlap remelting.

  • PDF

Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials (인가전위 하에서 HT-60강 용접부의 SCC특성 평가)

  • Na, Ui-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

Springback prediction of friction stir welded DP590 steel sheets considering permanent softening behavior (영구 연화 거동을 고려한 마찰교반용접(FSW) 된 DP강 판재의 탄성 복원 예측)

  • Park, T.;Lee, W.;Chung, K.H.;Kim, J.H.;Kim, D.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.304-307
    • /
    • 2008
  • In order to evaluate the effect of permanent softening behavior on springback prediction, 2D-draw bending simulations were compared with experiments for friction stir welded DP590 steel sheets. To account fur the nonlinear hardening behavior, the combined isotropic-kinematic hardening law was utilized with and without considering the permanent softening behavior during reverse loading. Also, the non-quadratic orthotropic yield function, Yld2000-2d, was used to describe the anisotropic initial-yielding behavior of the base sheet while anisotropic properties of the weld zone were ignored for simplicity.

  • PDF