• Title/Summary/Keyword: 용접연결

Search Result 138, Processing Time 0.036 seconds

The Estimation of Fatigue Design Strength on Base Metal and Welded Parts of Rail (철도궤조(鐵道軌條) 및 용접연결부(鎔接連結部)에 대한 피로설계강도(疲勞設計强度)의 평가(評價))

  • Yong, Hwan Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.109-116
    • /
    • 1988
  • The strength and load of structure are varied with the Passage of time, and become a process of probability. It is possible to estimate the reliability from the relation between strength and load. Considering the safety, It is reasonable to estimate allowable stress from the safety factor based on the reliability. In this study, the method to estimate probability of fracture, which is index of reliability for rail subjeict to long term fatigue load were examined. In estimation of reliablity it is meaningless to evaluate numerical value especially this difficult case estimating parameter of random variable. To overcome this problem, conventional design method estimating relative reliability were proposed. In this study the Cornell method were examined. The uncertainity of random variale, ie coefficient of variation which is the index of variation of strength and load were considered. The effect of uncertainity related to probability of fracture, and safety factor based on reliability were examined. The results of this study are followed. The reliability of weld metal were influenced by variation of strength more then load, and base metal were influenced by load. It is confirmed that the allowable stress range calculating with factor of safety based an reliability is conservative.

  • PDF

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

Fatigue Analysis for Levitation Rail of Urban Maglev System (도시형 자기부상열차 부상레일의 피로해석)

  • Kim, Kyung-Taek;Kim, Jae-Yong;Kim, Yong-Hwan;Park, Jin-Soo;Pyen, Sang-Yun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.39-45
    • /
    • 2008
  • A levitation rail is placed on the top of track structure to operate Maglev vehicles and a part of track that link up with a sleeper is applied repeated load in Maglev vehicles operation. This paper aimed to verify validity of design for levitation rail, through the fatigue analysis about load which is applied to levitation rail in Maglev vehicles operation and impact load occurring in an emergency landing. Load conditions applied design load(23kN/m) in normal operation and skid drop load(24kN/m) in vehicle drop. And boundary conditions are consider bolt fixing and welding. Through static analysis, weak point and maximum stress of levitation rail could be obtained. S-N(stress-life) method was used in oder to predict fatigue life, and Goodman relationship was applied to consider a effect of mean stress. Also damage was calculated by using Miner's. As a result of fatigue analysis, levitation rail had a fatigue life which was more than requirement ($10^6$cycle) in all analysis conditions. Assumption that $10^8{\sim}10^9$cycles is infinite life, all analysis conditions had infinite life except a case under drop load and bolt fixing($1.21{\times}10^6$).

  • PDF

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load (정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가)

  • Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.31-42
    • /
    • 2015
  • The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

Fatigue Strength Evaluation of Bogie Frame of Urban Maglev Train (도시형 자기부상열차 대차 프레임의 피로강도 평가)

  • Han, Jeong Woo;Kim, Heung Sub;Bang, Je Sung;Song, See Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • This study evaluated the fatigue strength of the bogie frame of an urban maglev train through fatigue analysis, cumulative damage, and fatigue tests based on a proposed fatigue evaluation method. The results of FEM analysis in which various load combinations were adopted showed that all data were under the fatigue limit of a butt welded joint made of A6005 in a Goodman diagram. The cumulative fatigue damage was calculated at the highest level from a bolt connecting the area of the electromagnetic pole in the casting block; however, the total sum was evaluated as D=0.808 based on $1{\times}10^7$ cycles, which indicates that it did not exceed the failure criteria. In addition, the results of the fatigue testshowed that there was no crack at any position in the bogie frame, which corresponded to the results of fatigue analyses.

Push-out Test on Welded Angle Shear Connectors used in Composite Beams (합성보에 적용된 앵글 전단연결재의 Push-out 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Dong Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2014
  • Steel-concrete composite beam has been used for a considerable time in building construction. An essential component of a composite beam is the shear connection between the steel section and the concrete slabs, which is provided by mechanical shear connectors. A variety of shapes and devices have been in use as shear connectors. This study summarizes the results of an experimental investigation involving the testing of push-out specimens with angle shear connectors. All of 22 push-out specimens were designed to study the effect of a number of parameters on the shear capacity of angle shear connectors such as the height of the angle connector, the length of welding, and the pitch of angles. Based on the test results, a design equation was developed for predicting the shear strength of angle shear connectors.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

Stability of Continuous Welded Rail Track under Thermal Load (온도하중을 고려한 장대레일 궤도의 안정성 해석)

  • Kang, Young Jong;Lim, Nam Hyoung;Shin, Jeong Ryol;Yang, Jae Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.281-290
    • /
    • 1999
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads ana speeds by improving rolling, welding, and fastening technology. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method. Rail element with a total of 14 degrees of freedom is used. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented.

  • PDF