• Title/Summary/Keyword: 용적세기조절회전치료

Search Result 14, Processing Time 0.02 seconds

The Impact of Tissue Inhomogeneity Corrections in the Treatment of Prostate Cancer with Intensity-Modulated Radiation Therapy (전립선암의 세기조절 방사선 치료시 밀도보정의 효과)

  • Han Youngyih;Park Won;Huh Seung Jae
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • Purpose: To investigate the effects of tissue inhomogeneity corrections on the dose delivered to prostate cancer patients treated with Intensity-Modulated Radiation Therapy (IMRT). Methods and Materials: For five prostate cancer patients, IMRT treatment plans were generated using 6 MV or 10 MV X-rays. In each plan, seven equally spaced ports of photon beams were directed to the isocenter, neglecting the tissue heterogeneity in the body. The dose at the isocenter, mean dose, maximum dose, minimum dose and volume that received more than 95% of the isocenter dose in the planning target volume ( $V_{p>95%}$) were measured. The maximum doses to the rectum and the bladder, and the volumes that received more than 50, 75 and 90% of the prescribed dose were measured. Treatment plans were then recomputed using tissue inhomogeneity correction maintaining the intensity profiles and monitor units of each port. The prescription point dose and other dosimetric parameters were remeasured. Results: The inhomogeneity correction reduced the prescription point dose by an average 4.9 and 4.0% with 6 and 10 MV X-rays, respectively. The average reductions of the $V_{p>95%}$ were 0.8 and 0.9% with the 6 and 10 MV X-rays, respectively. The mean doses in the PTV were reduced by an average of 4.2 and 3.4% with the 6 and 10 MV X-rays, respectively. The irradiated volume parameters in the rectum and bladder were less decreased; less than 2.1 % (1.2%) of the reduction in the rectum (bladder). The average reductions in the mean dose were 1.0 and 0.5% in the rectum and bladder, respectively. Conclusions: Neglect of tissue inhomogeneity in the IMRT treatment of prostate cancer gives rise to a notable overestimation of the dose delivered to the target, whereas the impact of tissue inhomogeneity correction to the surrounding critical organs is less significant.

  • PDF

Small Bowel Sparing Effect of Small Bowel Displacement System in 3D-CRT and IMRT for Cervix Cancer (자궁경부암의 3D-CRT와 IMRT시 소장전위장치의 소장 선량에 대한 영향)

  • Kang, Min-Kyu;Huh, Seung-Jae;Han, Young-Yih;Park, Won;Ju, Sang-Gyu;Kim, Kyoung-Ju;Lee, Jeung-Eun;Park, Young-Je;Nam, Hee-Rim;Lim, Do-Hoon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • Purpose : In radiotherapy for cervix cancer, both 3-dimensioal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) could reduce the dose to the small bowel (SB), while the small bowel displacement system (SBDS) could reduce the SB volume in the pelvic cavity. To evaluate the effect of the SBDS on the dose to the SB in 3D-CRT and IMRT plans, 3D-CRT and IMRT plans, with or without SBDS, were compared. Materials and Methods : Ten consecutive uterine cervix cancer patients, receiving curative radiotherapy, were accrued. Ten pairs of computerized tomography (CT) scans were obtained in the prone position, with or without SBDS, which consisted of a Styrofoam compression device and an individualized custom-made abdominal immobilization device. Both 3D-CRT, using the 4-field box technique, and IMRT plans, with 7 portals of 15 MV X-ray, were generated for each CT image, and proscribed 50 Gy (25 fractions) to the isocenter. For the SB, the volume change due to the SBDS and the DVHs of the four different plans were analyzed using palled t-tests. Results : The SBDS significantly reduced the mean SB volume from 522 to 262 cm$^{3}$ (49.8$\%$ reduction). The SB volumes that received a dose of 10$\~$50 Gy were significantly reduced in 3D-CRT (65$\~$80$\%$ reduction) and IMRT plans (54$\~$67$\%$ reduction) using the SBDS. When the SB volumes that received 20$\~$50 Gy were compared between the 3D-CRT and IMRT plans, those of the IMRT without the SBDS were significantly less, by 6$\~$7$\%$, than those for the 3D-CRT without the SBDS, but the volume difference was less than 1$\%$ when using the SBDS. Conclusion : The SBDS reduced the radiation dose to the SB in both the 3D-CRT and IMRT plans, so could reduce the radiation injury of the SB.

A Study on IMRT (Intensity Modulated Radiation Therapy) Delivery Technique and FFF (Flattening Filter Free) Beam to Increase Skin Dose to Irregularly Shaped Skin Surface. (IMRT(Intensity Modulated Radiation Therapy)전달 기법과 FFF(Flattening Filter Free) 빔을 이용한 요철 부위 피부 선량 증가 방법에 대한 고찰)

  • Woo Heon;Son Sang Jun;Je Young Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.7-12
    • /
    • 2022
  • Purpose: When it is difficult to secure the skin dose when treating Irregularly Shaped Skin Surface such as the nose where it is difficult to apply a bolus, increase the skin dose with a treatment plan that combines the IMRT (Intensity Modulated Radiation Therapy) delivery technique and FFF (Flattening Filter Free), It was tried to find out whether or not through the phantom experiment. Materials & Methods: Based on the 6MV-FF (Flattening Filter) and VMAT (Volumetric-Modulated Arc Therapy) treatment plans, which are the most commonly used treatment plans for head and neck cancer, A comparison group was created by combining VMAT and IMRT, FF and FFF, and the presence or absence of 5 mm bolus application. A virtual target was created on the Rando Phantom's nose, and a virtual bolus of 5 mm was applied assuming full contact on the Rando Phantom's nose. Five measurement points were determined based on the phantom's nose, and the absorbed dose was measured by irradiating each treatment plan 3 times per treatment plan according to the treatment technique and whether or not the bolus was applied. Result: The difference in skin dose in FF vs FFF increased in the case of FFF in VMAT bolus off, and there was no difference in case of IMRT bolus off. In VMAT bolus 5 mm and IMRT bolus 5 mm, it was confirmed that the skin dose was rather decreased in FFF. The difference in skin dose between VMAT and IMRT increased only in the case of FFF bolus off, and there was no statistical difference in the rest. For the difference in skin dose between bolus off vs bolus 5 mm, it was confirmed that the skin dose increased at bolus 5 mm, except for the case of using IMRT FFF. The treatment plan combining IMRT and FFF did not find any statistically significant difference as a result of analyzing the measured values of the treatment plan skin dose applied with a 5 mm bolus using the commonly used VMAT and FF. Therefore, it is thought that by using IMRT_FFF, it is possible to deliver a skin dose similar to that of applying a 5 mm bolus to VMAT_FF, which can be useful for patients who need a high skin dose but have difficulty applying a bolus. Conclusion: For patients who find it difficult to apply bolus, an increase in skin dose can be expected with a treatment plan that properly combines IMRT and FFF compared to VMAT and FF.

Evaluation of the Usefulness of MapPHAN for the Verification of Volumetric Modulated Arc Therapy Planning (용적세기조절회전치료 치료계획 확인에 사용되는 MapPHAN의 유용성 평가)

  • Woo, Heon;Park, Jang Pil;Min, Jae Soon;Lee, Jae Hee;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • Purpose: Latest linear accelerator and the introduction of new measurement equipment to the agency that the introduction of this equipment in the future, by analyzing the process of confirming the usefulness of the preparation process for applying it in the clinical causes some problems, should be helpful. Materials and Methods: All measurements TrueBEAM STX (Varian, USA) was used, and a file specific to each energy, irradiation conditions, the dose distribution was calculated using a computerized treatment planning equipment (Eclipse ver 10.0.39, Varian, USA). Measuring performance and cause errors in MapCHECK 2 were analyzed and measured against. In order to verify the performance of the MapCHECK 2, 6X, 6X-FFF, 10X, 10X-FFF, 15X field size $10{\times}10$ cm, gantry $0^{\circ}$, $180^{\circ}$ direction was measured by the energy. IGRT couch of the CT values affect the measurements in order to confirm, CT number values : -800 (Carbon) & -950 (COUCH in the air), -100 & 6X-950 in the state for FFF, 15X of the energy field sizes $10{\times}10$, gantry $180^{\circ}$, $135^{\circ}$, $275^{\circ}$ directionwas measured at, MapPHAN allocated to confirm the value of HU were compared, using the treatment planning computer for, Measurement error problem by the sharp edges MapPHAN Learn gantry direction MapPHAN of dependence was measured in three ways. GANTRY $90^{\circ}$, $270^{\circ}$ in the direction of the vertically erected settings 6X-FFF, 15X respectively, and Setting the state established as a horizontal field sizes $10{\times}10$, $90^{\circ}$, $45^{\circ}$, $315^{\circ}$, $270^{\circ}$ of in the direction of the energy-6X-FFF, 15X, respectively, were measured. Without intensity modulated beam of the third open arc were investigated. Results: Of basic performance MapCHECK confirm the attenuation measured by Couch, measured from the measured HU values that are assigned to the MAP-PHAN, check for calculation accuracy for the angled edge of the MapPHAN all come in a range of valid measurement errors do not affect the could see. three ways for the Gantry direction dependence, the first of the meter built into the value of the Gantry $270^{\circ}$ (relative $0^{\circ}$), $90^{\circ}$ (relative $180^{\circ}$), 6X-FFF, 15X from each -1.51, 0.83% and -0.63, -0.22% was not affected by the AP/PA direction represented. Setting the meter horizontally Gantry $90^{\circ}$, $270^{\circ}$ from the couch, Energy 6X-FFF 4.37, 2.84%, 15X, -9.63, -13.32% the difference. By-side direction measurements MapPHAN in value is not within the valid range can not, because that could be confirmed as gamma pass rate 3% of the value is greater than the value shown. You can check the Open Arc 6X-FFF, 15X energy, field size $10{\times}10$ cm $360^{\circ}$ rotation of the dose distribution in the state to look at nearly 90% pass rate to emerge. Conclusion: Based on the above results, the MapPHAN gantry direction dependence by side in the direction of the beam relative dose distribution suitable for measuring the gamma value, but accurate measurement of the absolute dose can not be considered is. this paper, a more accurate treatment plan in order to confirm, Reduce the tolerance for VMAT, such as lateral rotation investigation in order to measure accurate absolute isodose using a combination of IMF (Isocentric Mounting Fixture) MapCHEK 2, will be able to minimize the impact due to the angular dependence.

  • PDF