• Title/Summary/Keyword: 용융부 지름

Search Result 3, Processing Time 0.017 seconds

Influence of Surface Roughness on Morphology of Aluminum Alloy After Pulsed-Laser Irradiation (펄스 레이저 조사 후 알루미늄 합금의 표면상태에 대한 표면 거칠기의 영향)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1105-1111
    • /
    • 2011
  • The objective of this study is to investigate the influence of surface roughness on the morphology of aluminum 6061-T6 alloy after irradiation with a Nd:YAG pulsed laser. The test specimen was prepared by a polishing process using a diamond paste ($1{\mu}m$) and emery polishing papers (#100, #220, #600, #2400) to obtain different initial surface roughness. After irradiation with ten pulsed-laser shots, the surface morphology was examined by using scanning electron microscopy (SEM), optical microscopy (OM), and atomic force microscopy (AFM). The diameter of the melted zone increased with the surface roughness because the multiple reflections and absorption of the laser beam occurred on the surface because of the surface roughness, so that the absorptance of the laser beam changed. This result was verified using the relative absorptance calculated from the diameter of the melted zone with the surface roughness and the diameter increased with the average surface roughness.

Numerical Heat-conduction Modeling to Understand the Genesis of the Observed Geothermal Gradient in Ulleung Island using Experimentally Determined Thermal Properties of the Rocks (울릉도 산출 암석의 열물성 자료를 이용한 울릉도 지열 성인에 대한 열전도 수치모델링 연구)

  • Lee, Changyeol;Kim, Kiseog;Yun, Kwanhee
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.266-273
    • /
    • 2016
  • We have numerically modeled thermal evolution of Ulleung Island after an emplacement of magma chamber. The disk-shape magma chamber is assumed to locate at 2.9 km beneath the island and has a diameter and a thickness of 10 km and 300 (or 600) m, respectively. The geothermal gradients evaluated from the numerical modeling coincide well with the range of the geotherms (${\sim}95^{\circ}C/km$) observed from the well logging. Although there are limitations in the application of the numerical results directly to the interpretation of the observed geotherms, we believe that an existence of a hot magma chamber in molten or in solidified state is the most plausible explanation for the observed geotherms.

Reexamination of Ancient Ironmaking Technology Restoration Experiment Operating Methods (고대 제철기술 복원실험 조업방식에 대한 재검토 - 국립중원문화유산연구소 1~8차 복원실험을 중심으로 -)

  • CHOI Yeongmin;JEONG Gyeonghwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.6-25
    • /
    • 2024
  • This study concentrated on a report on the results of smelting experiments conducted eight times by the Jungwon National Research Institute of Cultural Heritage, put together the goals and results of the operation, and examined changes in the content of experiments and in the experimental results. First, changes related to operation, such as the ratio of raw materials to fuel and the presence or absence of additives, were reviewed depending on the operation goal. In addition, the results of metallurgical analysis of raw materials, formations, and byproducts were summarized and reviewed by comparing them with materials excavated from the ruins. The operation method varied up to the eighth smelting experiment in terms of iron ore roasting, additives, and raw material/fuel ratio. After reviewing the results again, pure iron with a low carbon content began to be confirmed through metallurgical analysis. As a result, it was confirmed that the charging ratio of raw materials and fuel plays an important role depending on the purpose of production. In addition, most of the products are gray cast iron, and it was deemed that this is due to changes in the internal structure of the pig iron while it was left in the furnace for a long time. The iron was an ingot that was in a molten state even though the carbon content did not reach 4.3%, where the process reaction takes place, and it was deemed to have been caused by excessive operating temperature. Based on the previously reviewed results and the structure and shape of the experimental furnace used in other ironmaking technology restoration experiments, this study finally attempted to restore the structure of an ancient iron smelting furnace, including the furnace's upper structure. By comprehensively referring to the remaining conditions of the excavated iron smelting furnace and the characteristics of the blow pipe, the form of the ancient iron smelting furnace was subdivided into six categories: furnace wall thickness, furnace height, blower height, blow pipe size, furnace inner wall shape, and top shape, and a restoration plan was proposed. To improve the problems of the restoration plan and the Jungwon National Research Institute of Cultural Heritage's experiments that have been conducted through continuous trial and error, an experiment that reflects changes in operating methods by lowering the furnace height and controlling the blowing volume is necessary.