There have been great concerns on induction, deduction, abduction, and hypothetical deductive method as scientific method and logic behind the method. However, as seen from the similar logic structure of abduction and hypothetical deductive method logic, distinction of those four terms could be unclear. This study investigates statements of science instruction textbooks concerning those terms to analyze their meaning as scientific method or in the context of inquiry. For this purpose, related statements are extracted from seven textbooks to investigate the definitions and examples of those terms and relation among these terms by focusing on coherence of usage of the terms and the possibility of clear distinction among the terms. We find that those terms do not have coherent meanings in the textbooks and many statements make it hard to distinguish the meanings of the terms. Finally the origin of the confusion and educational implication is discussed.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.401-404
/
2004
본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제시한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 여러 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 맡은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.
인터넷상의 정보의 급증에 따라 필요한 정보를 발견하고 관련된 정보를 조직화하기가 더욱 어려워지고 있으며 정보 접근의 부하를 줄이기 위한 효율적인 문서 분류의 중요성 및 필요성이 증가하고 있다. 본 논문에서는 디렉토리 내의 학습 문서 집합을 기반으로 구성된 디렉토리 내의 대표 용어 집합으로 구성된 모델을 학습 및 분류하기 위해 SVM을 사용한다. 문서분류를 위해 정보통신 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 학습을 수행한 후 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특징을 표현하기 위해 벡터공간 모델을 사용하였고 이를 기반으로 성능 평가를 수행한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.229-231
/
2004
추천 시스템은 양질의 정보를 추천하기 위해서 사용자의 관심도를 반영해야 한다. 이를 위해 본 연구에서는 강화학습과 관련 정보, 비관련 정보를 모두 이용하는 피드백 방법을 결합하였다. 사용자의 문서에 대한 평가를 평가 값으로 사용하여 사용자가 선호하는 용어와 선호하지 않는 용어를 추출하고, 이를 이용해 사용자 프로파일을 강화학습으로 학습하게 된다. 제안된 방법으로 신문기사 추천시스템에 적용하여 실험한 결과, 관련 정보와 비관련 정보를 함께 사용한 방범이 기존의 관련 정보안물 사용한 방법보다 더 나은 성능을 보였다.
Journal of The Korean Association For Science Education
/
v.39
no.6
/
pp.767-775
/
2019
This study was conducted to analyze explicit and implicit teaching cases of scientific terms in accordance with the 2015 revised curriculum, pointing out the problems of current textbooks in terms of scientific terms education and proposing method to improve them. Scientific terms used in eight science textbooks of 2015 revised curriculum, third and sixth graders of elementary school, first graders of middle school and first graders of high school were extracted, and cases used explicitly and implicitly were collected and analyzed. Brief summary of the results of the study is as follows. First, scientific terms were used in elementary, middle, and high school science textbooks at a rate of about 15 to 30 percent of the total vocabulary contained in the textbooks, which is on average more than five times larger than those in foreign countries based on the number of scientific terms included on each page. Second, among the scientific terms used in science textbooks, the percentage of scientific terms in which semantic education is achieved through explicit means was 9.7 to 18.8 percent, which naturally means that the remaining 80 percent or more of the scientific terms are presented in the form of implicit education. Third, even though the ratio of explicit term education should be higher in the lower grades, the ratio of explicit term education in elementary schools was lower than 10% in the sixth grade.
Kim, Nam-Hun;Joo, Jong-Min;Park, Hyuk-Ro;Yang, Hyung-Jeong
Proceedings of The KACE
/
2017.08a
/
pp.37-40
/
2017
본 논문에서는 국가 연구 보고서의 공기 관계 정보와 제목, 요약 등에 가중치를 적용한 유사도 계산방법을 제안한다. 이를 위해 국가 연구개발 보고서에서 텍스트를 추출하여 한 문장 단위로 문서를 분할하고, 기본 불용어와 보고서에서 특징적으로 나타나는 불용어를 처리하고 형태소 분석을 한 뒤 공기관계를 추출하였다. 또한 문서의 유사도 계산시 정확성을 높이기 위해 제목과 요약 부분에 가중치를 부여하였다. 이를 통해 본 논문에서 제안하는 방법이 문서 검색 라이브러인 루씬(Lucene)을 이용한 방법보다 2.5%의 검색성능 향상을 그리고 Knn-휴리스틱 방법보다는 1.1%의 검색성능 향상을 보였다. 이러한 결과를 통해 문서의 요약과 제목 그리고 공기관계 정보가 연구보고서의 유사도를 계산 하는데 영향을 미친다는 것을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.341-344
/
2001
20세기 후반 인터넷의 발전을 기반으로 전자메일은 현재의 대표적인 개인간 정보전달 수단으로 자리 잡게 되었다. 그러나 전자메일 사용자들은 인터넷상에 개인 전자메일 주소가 노출되므로 해서 많은 정크메일(junkmail)을 수신하게 되었는데, 정크메일이란 기업의 광고 선전물과 같이 수신을 원하지 않는 전자메일을 의미한다. 이러한 정크메일의 증가에 따라 정크메일을 분류하는 수단이 필요하게 되었는데, 현재까지는 사용자가 입력한 송신자의 전자메일 주소 또는 도메인 주소를 등록하여 차단하거나 제목에 특정 단어를 포함한 메일을 완전히 삭제하여 버리는 기술수준에 머무르고 있다. 본 논문에서는 퍼지 관계 곱을 기반으로 메일의 내용에 의미적으로 접근하여 정크메일을 분류하는 시스템을 제안한다. 이는 퍼지 관계곱 연산을 이용하여 미리 정의한 정크용어들과 사용자에게 수신되는 전자메일 내의 용어들간 의미적 포함관계를 분석하고 그를 통해 전자메일의 정크도(degree of junk)를 추출한다. 각 전자메일별로 추출된 정크도는 사용자가 부여하는 정크 기준치(SVJ, Standard Value of Junk)를 기분으로 정크메일과 비 정크메일로 분류한다. 제안된 기법은 사용자가 특정 개수의 동일한 전자메일에 대해 느끼는 정크도를 기준으로 분류한 정크메일 수를 비교하여 그 효용성을 증명하였다.
Annual Conference on Human and Language Technology
/
2012.10a
/
pp.185-190
/
2012
본 논문은 동아, 조선, 중앙, 한겨레 신문의 2009년 신문 사설의 제목과 본문에서 나타나는 n-gram에 대한 논의이다. 구체적으로 자주 출현하는 단어들의 연속 단위 3~6개의 형태소를 추출하여 신문 사설에서 나타난 고빈도 형태소 연속체를 살펴본다. 또한 이들을 기사문에서 추출한 패턴과 로그공산비로 비교하여 신문 사설에서 더 특징적인 의미로 사용되는 어휘들을 살펴본다. 그 결과, 사설 본문에서는 3-gram은 '아야 한다'. 4-gram은 'ㄹ 것이다', 5-gram은 'ㄹ 수밖에 없다', 6-gram은 '아야 할 것이다' 등이, 사설 제목은 '것인가, 안 된다'가 하나의 용어처럼 사용되고 있었다. 이러한 형태소 연속체를 살펴봄으로써, 신문사설의 텍스트 특징과 정형적인 표현에 대해서 살펴볼 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.178-180
/
2004
질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.