대부분의 정보 검색 시스템은 문서 내어서 추출된 모든 용어를 이용해서 문서간 유사도 계산이나 문서 분류, 문서 클러스터링 등에 활용한다. 그러나 실질적으로 문서 내외 모든 용어를 추출해야만 이러한 정보 검색 시스템을 활용할 수 있는 것은 아니며, 오히려 용어 빈도수 같은 가중치가 낮은 용어를 용어 추출에서 제외시킴으로써 모든 용어 추출로 인해서 발생하는 시간과 공간을 많이 소비하는 문제를 해결할 수 있다. 또한 정확하고 자동적인 문서 분류를 위한 문서 클러스터링보다 유사 문서 검색의 활용은 검색효율의 증가를 가져 올 수 있다. 본 논문에서는 유사 문서 판별 시스템을 이용해 용어 추출의 효율성을 실험하였으며, 모든 용어를 추출한 경우보다 중요 용어만 추출한 경우에 더 좋은 성능을 보였다.
복합어 추출 기법은 최근 활발한 연구가 진행되고 있는 온톨로지 구축과 정보 검색에 중요한 기법으로 연구되어 왔다. 초기의 연구는 주로 언어학적인 필터 기법이나 통계적 기법을 사용하였지만, 최근 문맥정보와 의미 사전 등을 이용하여 용어를 추출하는 방법으로 발전해 오고 있다. 또한 정보검색 분야와 온톨로지 분야에서도 모든 용어를 추출하는 방법보다 문서 집합의 도메인에 적합하다고 판단되는 용어들을 추출하는 방법이 그 성능을 향상시킬 수 있다. 본 논문에서는 통계학적 방법을 이용하여 도메인에 적합한 시드 용어의 추출을 하고, 그 시드 용어를 이용해 가중치를 정제하는 방법과 시드 용어로부터 관련된 용어를 추출해 나가는 방법을 적용하여 문서 집합의 도메인에 맞는 용어들을 추출하고자 한다.
현재, 과학기술, 정치, 사회, 문화의 급격한 변화와 발전에 따라, 전문분야마다 새로운 전문용어가 빈번히 생성되거나 소멸되고 있다. 이러한 전문용어를 포함한 문서를 정확히 해석하기 위해서는 전문용어 전자사전이 필요하다. 전문용어 전자사전을 개발하는데는 수시로 생성되는 전문용어 표제어를 정확히 추출하는 것이 무엇보다 중요하다. 본 논문에서는 이러한 전문용어 표제어를 컴퓨터를 이용하여 추출하는 시스템을 개발하였다. 기본적으로 기존의 전문용어가 사용된 특정어구를 이용하여 전문용어를 추출한다. 또한, 전문용어의 어절 패턴을 이용하여 후보 전문 용어를 추출한 후, 전문용어를 구성할 수 있는 단어의 위치정보를 이용하여 전문용어를 추출하는 방법을 제안한다. 기존 전문용어 사전에 없는 단어에 대해서는 시소러스를 이용하여 유사 단어의 위치정보를 이용하는 방법을 이용하였다.
전문용어의 가짓수가 많고 생성빈도 또한 높은 분야에서 고품질의 정보검색과 기계번역 결과를 얻기 위해서는 상당 분량의 번역용어사전의 확보가 필수적이다. 이러한 분야에서 번역용어사전을 수작업으로 구축하는 것은 큰 부담이 된다. 본 논문에서는 이미 알고 있는 용어(원어)와 번역용어를 말뭉치에서 함께 표기한 부분을 찾아 패턴화하는 작업과, 생성된 패턴으로 추가의 용어-번역용어를 추출하는 작업을 반복하여 수행함으로써 번역용어사전을 자동으로 구축하는 방안을 제안한다. 인터넷 문서를 대상으로 본 제안방법을 적용해 본 결과 상당분량의 유효한 한글-영문용어들을 추출할 수 있었다.
용어추출은 도메인 텍스트 모음으로부터 도메인 용어 목록을 인식하는 작업이다. 용어추출의 기존 효과적인 방법들은 비교사 방식으로 동작하며, 후보 용어 집합을 추출하는 작업과 후보 용어에 용어중요도를 할당하는 작업을 주요 단계로 포함한다. 후보 용어의 용어중요도 계산과 관련하여 본 논문에서는 후보 용어의 내부 및 외부용어집합을 활용한다. 내부용어집합은 후보 용어에 포함된 다른 짧은 용어들의 집합이며, 외부용어집합은 후보 용어가 포함된 다른 긴 용어들의 집합이다. 본 논문에서는 후보 용어의 내부 혹은 외부용어집합으로부터 후보 용어의 용어 강도를 계산하는 다양한 강도 함수들을 제시하고, 이들 용어 강도 값들과 C-value 점수를 결합하는 용어중요도 계산 방법을 소개한다. 생물학 및 전산언어학 분야 영어 데이터셋을 사용한 성능 평가에서는 제안된 방법의 용어추출 성능을 비교하고 분석한다. 제안된 방법은 생물학 및 전산언어학 분야 데이터셋에 대해 각각 최대 1%와 3% 차이의 성능 향상을 보였다.
지금까지 전문용어를 자동으로 추출 (Automatic Term Recognition: ATR)하기 위한 많은 연구들이 있어 왔다. 이들 연구들은 주로 문서 내의 용어의 빈도수와 같은 단순한 통계정보를 이용하여 전문용어를 추출하였다. 하지만 전문분야의 기계가독형 사전의 구축으로 인하여 전문용어를 추출하는 데 있어 전문분야 사전의 사용이 가능하게 되었다. 본 논문에서는 이러한 기계가독형 전문분야 사전들을 이용하여 사전 간의 계층관계를 구축하고 이를 이용하여 전문용어를 추출하는 방법을 제시한다. 또한 전문용어 사전에서 나타나지 않는 전문용어를 추출하기 위하여 용어의 빈도수, 외래어 및 외국어, 내포관계 등을 포함한 통계기법을 이용한다. 본 논문에서 제안하는 기법은 기존의 방법에 비해 좋은 성능을 나타내었다.
퍼지관계 개념을 응용한 BK-퍼지정보검색기법은 형태론에 입각하는 기존의 정보검색기법과는 달리 문서와 용어의 상대적 의미에 근거한 정보검색 기법이다. 그러나 BK-퍼지정보검색기법은 높은 시간복잡도(time complexity)의 검색 연산을 내재하고 있어 실제 대용량의 정보 검색은 사실상 불가능하다. 본 논문에서는 BK-퍼지검색정보모델의 시간복잡도를 낮추기 위해, 축소용어집합(reduced term set)을 이용한 개선된 BK-퍼지정보검색모델(A-FIRM)을 제안한다. 개선된 BK-FIRM은 시스템 처리시간과 신뢰도 간 상층점(trade-off)을 제공한다. 축소용어집합은 용어집합의 부분집합으로서 검색결과의 신뢰도와 밀접한 관계를 가진다. 동일한 크기의 축소용어집합이 주어질 때, 보다 적절한 용어들로 구성된 축소용어집합이 보다 나은 검색 신뢰도를 이끈다. 따라서 보다 적절한 축소용어집합 구성을 위한 축소용어집합 추출방법이 요구된다. 본 논문에서는 축소용어집합 추출방법을 크게 무작위 추출, 규칙에 의한 추출, 인간에 의한 직관적 추출 방법으로 구분하고 검색결과의 신뢰도 변화 형태를 분석한다.
전문용어란 전문분야의 개념이 언어적으로 표현된 형태이다. 전문분야마다 분야 특성 적인 개념이 사용되므로, 전문용어는 전문분야를 특성화하는 단위로 사용된다. 따라서 전문분야문서에 대한 자연언어처리에서 전문용어를 효과적으로 처리하는 것은 매우 중요하다. 전문용어 추출은 분야 특성적인 전문용어를 해당 분야 문서에서 파악하는 작업을 말한다. 본 논문에서는 기계학습방법을 이용한 전문용어 자동 추출 기법을 제안한다. 본 논문의 기법은 전문분야 사전과 전문분야 문서를 이용하여 문서에서 나타나는 전문용어의 특성을 파악하고 이를 이용하여 전문용어를 추출한다. 본 논문의 기법은 70,000단어 수준의 영어 의학분야 300개 문서에 대하여 약 77%의 정확률로 전문용어를 추출하였다.
지식 정보의 확산에 따라 기존 전문분야 용어집에 수록되지 않은 용어의 수가 폭발적으로 증가하고 있다 이에 따라 용어집을 자동으로 구축하는 작업이 필요하게 되었다. 본 논문에서는 의학분야 코퍼스에서 주어진 전문용어에 대한 정의문을 자동으로 추출하는 방법을 제안한다. 우선, 정의문의 구문적 패턴과 용어의 어휘구성 패턴을 이용하여 용어의 상위개념을 추정한다. 상위개념별로 구축된 특성 어휘 목록을 이용하여 구문적 패턴으로 뽑힌 문장에 등장하는 어휘의 적합성 여부를 판단하여 정의문을 추출한다. 실험 결과 코퍼스에 정의 정보가 있는 48개의 용어에 대하여 71.43%의 정확률을 보인다.
본 연구는 텍스트 코퍼스로부터 용어의 정의를 자동으로 추출하여 용어의 자동 추출기술과 통합하여 다목적의 용어뱅크를 구축하기 위한 목적으로부터 출발하였다. 지식정보의 확산에 따라 기존 전문분야 용어집에 수록되지 알은 용어의 수는 폭발적으로 증가하고 있다. 기존의 용어집 혹은 용어사전의 디지털화만으로는 새로운 전문용어의 포괄성에서 한계가 있는 것이다. 정보의 획득이라는 면에서 보면 이러한 한계를 극복하고 모든 용어에 대해서 즉시적으로 용어의 정의를 제공받는 것이 바람직하다. 자동으로 구축된 용어집의 응용은 여러 가지로 기대된다. 새로운 용어에 대한 의미 파악을 위해서는 물론, 확장된 전문용어집의 작성이나 전문분야 온톨로지의 구축 등에도 이용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.