• Title/Summary/Keyword: 용액점성

Search Result 75, Processing Time 0.02 seconds

Measurement of Photospetroscpopies by Anesthetics in Purple Membrane and Red Membrane (Purple Membrane과 Red Membrane에서 마취제에 의한 분광학적 측정)

  • Kim, Ki-Jun;Jeong, Hyeon-ghak;Kim, Juhan;Song, Hui-jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.472-477
    • /
    • 2018
  • The excess molar volumes of a general anesthetics on Purple membrane and Red membrane separated by extraction in Halobacteriun Halobium and in suspensions of vesicle have been determined at $25^{\circ}C$, it was used a excess volume dilatometer. The anesthesia characteristics of general anesthetics, Propofol was fined by our study to correlate with excess molar volume. Excess volume changes of the vesicle measured by excess volume dilatometer, which is an important amino acid and lipid in the purple membrane and red membrane by means of specific weight in Halobacteriun Halobium, were studied by absorption intensity at 280 nm and 330 nm. The particle size analysis and relative turbidity of Purple membrane and Red membrane by means of Propofol were measured for mechanical properties. In the samples where Propofol is incoporated in vesicle, especially, the excess molar volume of PM + RM + Propofol is the greatest than the excess molar volumes of PM, and RM.

Isolation and Characterization of Bacillus sp. P16 Producing Extracellular Chitosanase (키토산분해효소를 생산 분비하는 Bacillus sp. P16의 선발 및 특성)

  • Jung, Mi-Ra;Jo, Yoo-Young;Chi, Yeon-Tae;Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.369-374
    • /
    • 1997
  • An endochitosanase-producing bacterium was isolated from soil and identified as a strain of Bacillus sp. The isolate was gram positive, rod shape $(0.4-0.6{\times}1.6-2.2{\mu}m)$, endospore-forming, catalase positive, and mobility positive, and grown at pH 4.5-11.0 and upto $42^{\circ}C$ in the medium containing 2% NaCl. RAPD analysis of the DNA purified from the strain was also performed, and the chitosanase-producing strain was named as Bacillus sp. P16. The culture supernatant of the strain showed strong liquefaction activity and rapidly decreased viscosity of chitosan solution. By TLC and HPLC, chitooligosaccharides of DP 2-7 were separated and identified from the enzyme hydrolyzates of chitosan. The chitosanase from Bacillus sp. P16 was thus regarded as an endo-splitting type.

  • PDF

Synthesis and Properties of Liquid Crystalline Polyesters with X-shaped Mesogenic Group in Main Chain (주사슬에 X-자 모양의 메소젠기를 갖는 액정폴리에스터의 합성 및 성질)

  • Park, Jong-Ryul;Cho, Kuk-Young;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • A series of liquid crystalline polyesters containing X-shaped mesogenic groups in main chain were synthesized through the solution polymerization of 2,5-di(4-substituted benzoate)hydroquinones and 4,4'-dicarboxy-1,8-diphenoxyoctane. The structures and properties of synthesized polymers were investigated by $^1H$-NMR, FT-IR, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), polarized optical microscopy (POM) and wide angel X-ray diffraction (WXRD). Inherent viscosities (${\eta}_{inh}$) of polymers were measured between 0.35 and 0.66 dL/g in 1,1,2,2-tetrachloroethane, and they were easily soluble in most of organic solvents used for this experiment. All polymers revealed relatively low melting transition temperature ($T_m$) and crystallinity, and also showed thermotropic nematic liquid crystallinity when they were heated to their melting temperatures. These properties of polymers were presumably due to the presence of the bulky substituting groups on the hydroquinone unit in mesogenic group.

Controlling of Molecular Weight and Degree of Deacetylation of Chitosan and Its Characteristics in Film Formation (키토산 분자량과 탈아세틸화도 조절 및 이에 따른 필름 특성)

  • Hwang, Kwon-T.;Park, Hyun-J.;Jung, Soon-T.;Ham, Kyung-S.;Yoo, Yong-K.;Cho, Gun-S.
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • Applications of chitosan are related to molecular weight and degree of deacetylation(DOD) of chitosan completely. The molecular weight and DOD were greatly affected by the concentration of solution time and temperature. The degree of demineralization was not significantly different at $50^{\circ}C\;and\;70^{\circ}C$ after 30 minutes. Deproteinization decreased as process time increased. The nitrogen content was reached to 6.92% after 90 minute at $80^{\circ}C$, which is similar to theoretical nitrogen content of chitin. The DOD was 82.84% after 2 hours reaction and increased as the reaction time increased in the process. Viscosity and molecular weight are increased as recycling number of concentrated NaOH solution increased. Chemical, biological and physical properties of chitosan depend on the DOD and molecular size of the molecule. Tensile strength of the films from acetic acid solutions was between $28.9{\sim}33.6$ MPa and was generally higher than that of the films from lactic acid. Elongation of the films from lactic acid was between $97.0{\sim}109.7%$ and was generally higher than that of the films from the acetic acid. Water vapor permeability of the films prepared from lcetic acid solutions was between $1.9{\sim}2.3ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and was generally higher than that of the films from the acetic acid.

  • PDF

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Preparation of Liquid Crystal Emulsion for Transdermal Delivery of Glycyrrhizic Acid and Physical Characteristics and In Vitro Skin Permeation Studies (글리시리직애씨드의 경피 전달을 위한 액정 에멀젼의 제조와 물리적 특성 및 In Vitro 피부투과 연구)

  • Jung, Jin Woo;Yoo, Cha Young;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.315-324
    • /
    • 2015
  • In this study, we prepared liquid crystal emulsion composed of amphiphilic substance $C_{14-22}$ alcohol, $C_{12-20}$ alkyl glucoside, behenyl alcohol and studied liquid crystal emulsion of properties and in vitro skin permeation. The results of formulation experiments, the clear liquid crystalline structure was observed in the ratio of $C_{14-22}$ alcohol 0.8%, $C_{12-20}$ alkyl glucoside 3.2%, behenyl alcohol 4% in the formulation. The results of physical property measurements, the viscosity of liquid crystal emulsion and O/W emulsion applied as a control group was respectively $1871.26{\sim}1.15Pa{\cdot}s$, $1768.69{\sim}1.14Pa{\cdot}s$ and the shear stress of O/W emulsion was 178.68 ~ 909.18 Pa, that of liquid crystal emulsion was 190.45 ~ 919.38 Pa. The storage modulus of O/W emulsion was 3428.53 ~ 9157.45 Pa, that of liquid crystal emulsion was 4487.82 ~ 8195.59 Pa. The tan (delta) value of O/W emulsion which means a ratio of viscosity to elasticity was 0.43 ~ 0.19, and that of liquid crystal emulsion was 0.23 ~ 0.25. The water content value on the skin for liquid crystal emulsion was significantly higher from 1 h to 6 h compared with that of O/W emulsion and the transepidermal water loss on the skin was significantly superior in skin moisture loss suppression from 30 min to 4 h compared with that of O/W emulsion. The results of skin permeation using glycyrrhizic acid, the result of skin permeation amount of liquid crystal emulsion for 24 h was $64.58{\mu}g/cm^2$, that of O/W emulsion was $37.07{\mu}g/cm^2$, that of butylene glycol solution was $41.05{\mu}g/cm^2$. Hourly permeability results, it is showed that skin penetration effect of the liquid crystal emulsion increases after 8 h. These results suggest that liquid crystal emulsions are effective for skin moisturizing effect and function as potential efficacy ingredient delivery system for the transdermal delivery.

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

Clean Flotation Process to Recycle useful Materials from Fly Ash (비산재로부터 유용성분을 회수하는 청정부유선별공정)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

Synthesis and Properties of Linear and Star-shaped poly(L-lactic acid)s by Direct Solution Polycondensation (직접 용액 축중합에 의한 직쇄형 및 스타형 폴리락트산의 합성과 물성)

  • Kim, Wan Jung;Lee, Sun Young;Kim, Ji-Heung;Kim, Soo Hyun;Kim, Young Ha
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1028-1034
    • /
    • 1999
  • Poly(lactic acid) is expected to be one of the most promising biodegradable polymers. However, the high molecular weight polymer could be obtained by ring-opening polymerization process conventionally, which raises the production cost and decreases the final yield. In this study, linear and star-shaped poly(L-lactic acid)s were prepared by direct solution polycondensation method and their physical and thermal properties were examined. Tin compounds were found to be effective catalyst for the preparation of high molecular weight polymers. When 0.2g (0.5 wt % of monomer) of $SnCl_2$ and 100 mL of p-xylene were used, the polymer yield and molecular weight were relatively high. As a means to obtain higher molecular weight polymer easily in the direct polycondensation system, dipentaerythritol(dipet) or pentaerythritol(pet) was introduced as a multifunctional branching monomer to provide a star-shaped poly(lactic acid). Moderately high molecular weight polymers with the inherent viscosity values up to 1.14 dL/g(weight-average molecular weight of about 140000 by GPC) were obtained and could be cast strong and transparent films.

  • PDF

A Chemical Study of the Periodic Precipitation Reaction in Natural Rocks (자연 암석에서 나타나는 주기적침전반응의 화학적 연구)

  • Jun, Sang-Ho;Han, Mi-Ae
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.491-496
    • /
    • 2007
  • This study conducted a chemical experiment on the Leisegang phenomenon, which is known to be the principle of rhyolite formation, and analyzed the results. Even if the same chemical elements precipitated, the shape of Leisegang rings was different according to the condition of medium and depending on inner electrolyte and outer electrolyte. The experiment used agar, gelatin and mung-bean jelly as media. We prepared 0.01M inner electrolyte containing agar 1%, gelatin 2% and mung-bean jelly 5% and curdled the solution at room temperature for 12 hours and, as a result, we obtained viscosity optimal for experimenting on the diffusion of outer electrolyte, and Leisegang rings appeared clearly according to the characteristic of each chemical element. In $PbI_2$ with solubility product($K_{sp}$) of $7.9{\times}10^{-9}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $Pb(NO_3){_2}$ were narrow between 0.01cm and 0.12cmm but increased gradually, but in with of $8.3{\times}10^{-17}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $AgNO_3$ were between 0.7cm and 0.45cm and decreased gradually. This suggests that, in the chemical formation of Leisegang rings, the interval and size of the rings are correlated with the solubility product of the precipitates.