• 제목/요약/키워드: 용액장거리수송

검색결과 3건 처리시간 0.018초

흡수식을 이용한 상온에너지수송의 모사 및 비용평가 (Simulation and Cost Estimation of Energy Transportation at Ambient Temperature Using an Absorption System)

  • 김성수;오민규;전상현;강용태
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1028-1034
    • /
    • 2003
  • The objectives of this paper are to study the effect of key parameters on the cycle performance and capacity and to estimate the cost of latent and sensible energy transportation systems. The overall conductance (UA) of each component, the ambient temperature and the absorber inlet temperature are considered the key parameters. It is concluded that COP of the solution transportation using an absorption system (STA) at ambient temperature is 10% higher than that of the conventional sensible system. It is also found that the cost of STA system can be reduced 7.5 times to that of sensible energy transportation for one year of operation with 10 km transportation distance.

LCC 분석에 의한 상온 에너지수송용 흡수식 냉동기(STA)의 경제성 평가 (Life-Cycle Cost Analysis of Solution Transportation Absorption System)

  • 오민규;이봉진;홍희기;강용태
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.506-513
    • /
    • 2004
  • The objective of this paper is to evaluate the economic performance of latent and sensible energy transportation systems. LCC (Life-Cycle Cost) analysis is a practical method and a guideline for evaluating the economic performance of considered systems during the Life-Cycle Period. By comparing the LCC of alternatives, The most ideal alternative is determined which has the lowest LCC. It is concluded that the cost of STA (Solution Transportation Absorption system) can be reduced by 67% to that of sensible energy transportation for study period with 10 km transportation distance.

지역냉방 적용을 위한 LNG냉열 장거리 수송용 제 2종 흡수식 시스템 (Type 2 Absorption Cycle to Transport Energy in the Long Distance for District Cooling Application)

  • 조영경;김진경;오민규;강용태
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.250-255
    • /
    • 2005
  • The objective of this paper is to develop a new energy transport system for district cooling application by using type 2 absorption cycle. Cold energy from the LNG storage system is utilized as the cooling source of the condenser and the rectifier. The pressures of the system, UAs of the evaporator and the desorber, and the inlet temperatures of the refrigerant to each component are considered as the key parameters. The results show that UA of the evaporator is more dominant parameter on COP than that of the desorber and the optimum system pressure for the demand side is estimated as 525 kPa. For the present system, it is recommended that the refrigerant inlet temperature of the evaporator be lower than $4.3^{\circ}C$ for long-distance transportation. It is concluded that the cold energy from the LNG storage system can be effectively applied to the long-distance transportation system for district cooling application with the type 2 absorption cycle. The optimum operation conditions are also predicted from the parametric analysis.