• Title/Summary/Keyword: 용리조직

Search Result 11, Processing Time 0.025 seconds

Occurence of Ilmenite on the Ti-bearing Ore Bodies in Bukcheon, Hadong Area (하동군 북천면 지역 함티타늄광체 내 티탄철석의 산출특성)

  • Kwak, Ji Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • Study area (Jikjeon-ri) is located in south end of the Hadong anorthositic rocks. And along the south-western boundary, diorite intruded the Hadong anorthosite. Ilmenite ore bodies are extended in both anorthosite and diorite. And their occurrence in the diorite are not studied yet. While no particular textures are found in the ilmenite within the anorthosite, the ilmenite within the diorite shows characteristic exsolution texture, that is, ilmenite phases are separated into rutile and Fe-oxide and the ilmenite and Fe-oxide. MnO composition in ilmenite ratios are 2.14~3.74wt%, it has higher composition in diorite than that in anorthosite. The plagioclase composition display andesine ($An_{28.7-42.9}$) in the diorite and labradorite ($An_{57.1-72.8}$) in the anorthosite in composition. The exsolution of ilmenite has been developed during the cooling of partly melted ilmenite into rutile and Fe-oxides which is related to the intrusion of the diorite.

Fe-REE Mineralization of the Hongcheon-Jaeun District (홍천-자은지역 철-희토류광상의 광화작용)

  • 김상중;이현구;윤경무;박중권
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.319-328
    • /
    • 2001
  • The Fe-REE deposit of the Hongcheon-Jaeun district occurs in Precambrian gneiss, and is classified into two ore bodies: the Jaeun ore body (northern ore body) and the Hongcheon ore body (southern ore body). Ecomonically important minerals consist of magnetite, monazite, strontianite and barite. Based on mineral assemblages and textures, the mineralization can be classified into two stages (Na-carbonatite stage and Fe-carbonatite stage). Main REE minerals were precipitated during the Fe-carbonatite stage. Some evidences of the carbonatite origin include: 1) strontianite-monazite exolution texture, 2) strontianite-barite exolution texture, 3) the occurrence of acmite of igneous origin at the area with abundant rare earth minerals, 4) the occurrence of the mineral assemblage consisting of carbonate minerals + magnetite + REE minerals. Therefore, we suggest that Fe-REE mineralization in the study area was related to carbonatite of igneous origin.

  • PDF

브라디키닌 수용체에 관한 연구

  • 정성현
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.28-28
    • /
    • 1992
  • 브라디키닌은 체내에서 강력한 혈관 확장 작용을 일으키는 autacoid(local hormone)로서 혈압의 항상성 유지, 모세혈관 투과성 증진, 염증 및 통증 반응 등에 관여하고 여러 장관 평활근을 수축시킨다. 또한 septic 혹은 endotoxic shock의 여러 원인 물질로도 생각되어진다. 최근 rhinovirus로 인한 감기의 제증상 원인 물질로도 브라디키닌이 주목을 받고있다. 이와같이 브라디키닌온 다양한 질병에 있어 중요한 원인 물질로 여겨지므로 브라디키닌 길항제들은 한두 질병의 치료제로 개발될 가능성이 높음이 강력히 제시되고 있는 실정이다. 이의 개발을 위해서 브라디키닌 수용체에 대한 연구는 필수적이라고 할 수 있다. 본 연구는 두 부분으로 나누어 진행중인데 첫째, 이제까지 보고된 브라디키닌 길항 물질들은 대부분이 브라디키닌의 특정 아미노산 잔기를 치환시킨 펩타이드 유도체로서 이들을 경구 투여시 peptidase어 의하여 쉽게 분해되고 또한 부분적인 효능제 활성을 갖는 불리한 점을 감안하여, 비펩타이드성 브라디키닌 길항제를 개발할 목적으로 한방 및 민간에서 자주 사용되어온 생약중에 브라디키닌 작용에 선택적 길항효과가 있는 물질을 검색한 바 활성을 보인 황금으로부터 작용 성분을 추적중에 있다. 둘째, 브라디키닌 수용체를 순수하게 분리 정제하기 위한 첫 단계로서 이 수용체의 결합시험(binding assay) 방법을 확립하고 더불어 여러 조직내(흰쥐의 여러 기관, 토끼 및 사람의 신장)의 브라디키닌 수용체의 분포를 파악하는 일이다. 횐쥐 조직의 실험 결과로부터 신장에 브라디키닌 수용체가 많이 분포함을 확인되었고 향후 토끼 신장으로부터 동수용체를 분리하고자 한다. 또한 토끼 신장의 근위세뇨관일차배양세포을 이용하여 브라디키닌의 신장에서의 작용기전도 살펴보고 있다.+}$, $Na^{+}$, NH$_{4}$$^{+}$ 및 H$^{+}$) 수용액 메디움에서의 Cd(II), Mg(II) 및 Zn(II)의 Dowex 1-X8, Cl$^{-}$ 수지에 대한 흡착은 역시 어떤 메디움에서도 Cd(II) 흡착이 제일 크며, 다음이 Zn(II) 이고 착이온을 형성않는 Mg(II)이 제일 작았다. 한편 메디움 종류별 D값의 크기순위는 H$^{+}$>K$^{+}$> $Na^{+}$>NH$_{4}$$^{+}$이였다. 메디움의 종류에 따라 D값의 차이가 나는 것은 금속이온의 착이온 형성과 금속이온의 용액내에서의 이온종의 상태와 관련이 있다고 생각된다. 마. MCl(M:K$^{+}$, $Na^{+}$, NH$_{4}$$^{+}$ 및 H$^{+}$)과 MNO$_{3}$ 용리액에 의한 Cd(II), Mg(II) 및 Zn(II)의 용리는 예상한 바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$$^{+}$의 경우

  • PDF

Screening of Endogenous Maize (Zea mays) Substances Enhancing Auxin-induced Inward Curvature in Coleoptilar Slits (안쪽으로 굽어지는 자엽초 박편의 옥신 반응을 촉진하는 옥수수(Zea mays) 내생물질의 탐색)

  • Park, Woong-June
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.859-865
    • /
    • 2006
  • When thin slits (e.g., $1mm{\times}10mm$) of maize (Zea mays) coleoptiles were floated on a buffer, they spontaneously curved outward because of unbalanced tissue tension between inner and outer faces. Exogenously applied auxin induced inward curvature of the thin strip of the maize coleoptile in a dose-dependent manner. This bioassay system was used to screen endogenous substances that work together with auxin. In methanol extract of maize coleoptiles including the leaves inside, Active fractions that promote the auxin-induced inward curvature of maize coleoptile slices were found. The curvature-enhancing activity of the extract was not related to energy supply. The active substances were adsorbed to $C_{18}$ cartridges even at pH 10 and eluted in two fractions by 50% and 80% methanol. These substances were named as Curvature-Enhancing Factor-1 (CEF-1) and Curvature-Enhancing Factor-2 (CEF-2), respectively. The CEF-2 was resolved on a reversed phase $C_{18}$ column by HPLC.

Bromide Concentration in Human Biological Samples Intoxicated by Methylbromide (Methylbromide에 중독된 인체시료 중 브롬이온의 함량)

  • You, Jae-Hoon;Lee, Sang-Ki;Jin, Kwang-Ho;In, Sang-Wban;Yoo, Young-Chan;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.88-91
    • /
    • 1998
  • Bromide($Br^-$) was separated and quantified with $2.8mM-NaHCO_3/2.2mM-Na_2CO_3$ by Ion Chromatography. Bromide was eluted at 8.9 min. and the detectetion limit was 2.5 ng. We compared with bromide concentration in normal or methylbromide intoxicated bloods and tissues. Bromide concentrations were 2.0~5.8 ppm in normal bloods and 1.0~5.3 ppm in normal tissues. In fatal cases of methylbromide intoxication, blood bromide concentrations (4 cases) of 74.2~139 ppm and tissue bromide concentration (1 case) of 76 (heart)~201 (lung) ppm were detected. In fatal cases, blood bromide concentrations. were 12~22 times higher than those of normal bloods.

  • PDF

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

Textural and Geochemical Characteristics and their Relation of Spinel Peridotite Xenoliths from Jeju Island (제주도 첨정석 페리도타이트 포획암의 조직 및 지화학적 특성과 그 관련성)

  • Yu, Jae-Eun;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.227-244
    • /
    • 2010
  • Abundant spinel lherzolite xenoliths showing distinctively different textural types such as protogranular, porphyroclastic, and mylonitic texture are trapped in the basaltic rocks from southeastern part of Jeju Island. These xenoliths show the textural spectrum from coarse-grained protogranular through porphyroclastic with bimodal grain size to fine-grained and foliated mylonitic texture. They tend to decrease in grain sizes and show more linear grain boundaries and more frequent triple junctions from protogranular through porphyroclastic to mylonitic. Spinel has different occurrence mode according the textural type. Spinel is always associated with orthopyroxene in protogranular texture, whereas it is scattered and independent of orthopyroxene in mylonitic texture. Additionally, porphyroblast from porphyroclastic and mylonitic textures has internal deformation features such as kink band, undulatory extinction and curved lamella, whereas neoblast is strain-free. These textural features indicate increasing degree of static/dynamic recrystallization from protogranular through porphyroclastic to mylonitic texture. The mg#[$=100{\times}Mg/(Mg+Fe_t)$] of olivine, orthopyroxene and clinopyroxene is relatively constant (ol: 88-91; opx: 89-92; cpx: 89-92) regardless of textural differences. The mg# of constituent minerals, NiO content (0.3~0.4 wt%) and MnO content (0.1~0.2 wt%) of olivine are similar to those of mantle xenoliths worldwide, also indicating that studied spinel lherzolite xenoliths were mantle residues having experienced 20~25% partial melting. The geochemical and textural characteristics have close relations showing that LREE and incompatible trace elements content of orthopyroxene and clinopyroxene increases from protogranular through porphyroclastic to mylonitic. These observations suggest that the studied mantle xenoliths experienced metasomatism by LREE enriched melt or fluid after partial melting, indicating a close relation between deformation and metasomatism. The metasomatism was possibly confined to narrow shear zones from where porphyroclastic and mylonitic textured xenoliths originated. These shear zones might favorably drive the percolation of LREE-enriched melts/fluids responsible for the metasomatism in the lithospheric mantle below the Jeju Island.

Textural and Genetic Implications of Type II Xenoliths Enclosed in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 Type II 포획암: 성인과 조직적 특성)

  • Yu, Jae-Eun;Yang, Kyoung-Hee;Hwang, Byoung-Hoon;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.223-236
    • /
    • 2009
  • Ultramafic xenoliths from southeastern part of Jeju Island can be grouped into two types: Type I and Type II. Type I xenoliths are magnesian and olivine-rich peridotite (mg#=89-91), which are commonly found at the outcrop. Most previous works have been focused on Type I xenoliths. Type II xenoliths, consisting of olivine, orthopyroxene and clinopyroxene with higher Fe and Ti components (mg#=77-83) and lower Mg, Ni, Cr, are reported in this study. They are less common with a more extensive compositional range. The studied Type II xenoliths are wehrlite, olivine-clinopyroxenite, olivine websterite, and websterite. They sometimes show ophitic textures in outcrops indicating cumulate natures. The textural characteristics, such as kink banding and more straight grain boundaries with triple junctions, are interpreted as the result of recrystallization and annealing. Large pyroxene grains have exsolution textures and show almost the same major compositions as small exsolution-free pyroxenes. Although the exsolution texture indicates a previous high-temperature history, all mineral phases are completely reequilibrated to some lower temperature. Orthopyroxenes replacing clinopyroxene margin or olivine indicate an orthopyroxene enrichment event. Mineral phases of Type II are compared with Type I xenoliths, gabbroic xenoliths, and the host basalts. Those from Type II xenoliths show a distinct discontinuity with those from Type I mantle xenoliths, whereas they show a continuous or overlapping relation with those from gabbroic xenoliths and the host basalts. Our petrographic and geochemical results suggest that the studied type II xenoliths appear to be cumulates derived from the host magma-related system, being formed by early fractional crystallization, although these xenoliths may not be directly linked to the host basalt.

Genetic Environments of Au-Ag-bearing Geumhwa Hydrothermal Vein Deposit (함 금-은 금화 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The Geumhwa Au-Ag deposit is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into two stages (stage I and II) by major tectonic fracturing. Stage II is economically barren. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early substage, marked by deposition of pyrite with minor wolframite; middle substage, characterized by introduction of electrum and base-metal sulfides with Cu-As and/or Cu-Sb sulfosalts; late substage, marked by hematite and Bi-sulfosalts with secondary minerals. Changes in vein mineralogy reflect decreases in temperature and sulfur fugacity with a concomitant increase in oxygen fugacity. Fluid inclusion data indicate progressive decreases in temperature and salinity within each substage with increasing paragenetic time. During the early portion of stage I, high-temperature (≥410℃), high-salinity fluids (up to ≈44 equiv. wt. % NaCl) formed by condensation during decompression of a magmatic vapor phase. During waning of early substage, high-temperature, high-salinity fluids gave way to progressively cooler, more dilute fluids associated with main Au-Ag mineralization (middle) and finally to ≈180℃ and ≥0.7 equiv. wt. % NaCl fluids associated with hematite and sulfosalts (± secondary) mineralization (late substage). These trends are interpreted to indicate progressive mixing of high- and medium to low-salinity hydrothermal fluids with cooler, more dilute, oxidizing meteoric waters. The Geumhwa Au-Ag deposit may represent a vein-type system transitional between porphyry-type and epithermal-type.