• 제목/요약/키워드: 욜로 버전 8

검색결과 1건 처리시간 0.014초

Fashion Category Oversampling Automation System

  • Minsun Yeu;Do Hyeok Yoo;SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.31-40
    • /
    • 2024
  • 국내 온라인 패션 플랫폼은 개인사업자가 제품정보를 직접 등록하기 때문에 개인사업자의 불편함을 초래한다. 많은 제품군을 한꺼번에 수동 등록하므로 수기 입력된 제품정보로 인한 신뢰성 문제가 발생한다. 등록된 상품 이미지의 저품질 및 데이터 수의 불균형으로 인한 편향도 심각하게 제기된다. 본 연구는 오버샘플링 기법을 통해 데이터 편향을 최소화하고 13개 패션 카테고리의 다중 분류를 수행하는 ResNet50 모델을 제안한다. 컴퓨팅 자원과 오랜 학습시간을 최소화하기 위해 전이학습을 활용했다. 결과적으로, 데이터 수가 매우 부족했던 클래스의 데이터 증강을 통해 기본 CNN 모델에 비해 최대 33.4%의 향상된 식별력을 보여주었다. 모든 결과의 신뢰성은 정밀도-재현율 곡선으로 보장한다. 본 연구는 국내 온라인 패션 플랫폼 산업의 발전을 한 단계 끌어올릴 수 있을 것으로 기대한다.