• Title/Summary/Keyword: 요 에러

Search Result 25, Processing Time 0.049 seconds

A Study on Performance Requirement of I/Q Impairments for RF Implementation in W-CDMA User Equipment (W-CDMA 사용자장치 RF 구현을 위한 I/Q 열화성능요구규격 연구)

  • Lee, Il-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.148-154
    • /
    • 2005
  • This paper deals with performance degradations caused by RF I/Q impairments such as amplitude mismatch and phase mismatch in W-CDMA user equipment which uses QPSK(Quadrature Phase Shift Keying) modulation. The impacts of I/Q impairments on the BER(Bit Error Rate) are analyzed by using the variations of adjacent symbol distance. The BER versus amplitude mismatch and phase mismatch with QPSK constellation is reviewed through Matlab simulation. Performance degradation produced by RF I/Q impairments is measured with the implemented RF transceiver and modulation/demodulation test equipments through EVM(Error Vector Magnitude). The minimum performance requirements of amplitude mismatch and phase mismatch in W-CDMA user equipment are presented from the point of hardware implementation and the test method of the impairments is also included.

A Case Study on the Human Error Analysis of Forklift Operations in a Small Enterprise (소규모 사업장의 지게차 작업에 관한 휴먼에러 분석 사례 연구)

  • Ha, Gyu Cheol;Park, Jungchul
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.207-215
    • /
    • 2021
  • A forklift is an industrial vehicle with a power-operated fork for lifting and moving heavy loads over short distances. A significant number of accidents are caused by forklifts every year. Most of them are known to be caused by the unsafe acts of workers. However, only a few studies have focused on the risks of forklift work from the perspective of human error. In addition, various methods have been developed to analyze the risk of human error, while it is hard to find studies that directly compare the effectiveness or strengths/weaknesses of those methods. This study aims to analyze risk factors related to unsafe behavior in forklift operations using two representative human error analysis techniques, i.e., .SHERPA and HE-HAZOP, and compare their advantages and disadvantages. The analysis was performed on three main forklift operations ('unloading from the truck', 'moving and loading into the storage', and 'loading on the truck'). As a result, 118 errors and 34 remedial measures were derived by SHERPA. Through HAZOP, 139 errors and 54 measures were derived. The two techniques were compared in terms of the number of results and the method of deriving errors and remedial measures, cause analysis, and risk assessment. This study might be used to reduce human error related disasters in workplaces using forklifts. In order to provide a guide for choosing an appropriate analysis method, more comparative studies on different techniques involving wide range of tasks are needed in the future.

Assessment of Wind Turbine Load and Performance Effects by Yaw Control (풍력 터빈의 요 제어에 따른 하중 및 성능 영향성 평가)

  • Kim, Jin;Kim, Ji Yon;Koh, Jang Wook;Kweon, Ki Yeong
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The wind generally includes turbulence characteristics in nature. So the yaw errors between wind turbine direction and wind direction occur due to turbulence fluctuation. The yaw errors affect the fatigue load of wind turbine system and power reduction. The components of turbulence intensity are different from those of each site where the wind turbines are installed. We studied that the fatigue load and power efficiency are improved by controlling yaw motions. In this study, we controlled the averaged yaw error time according to site conditions by turbulence intensity.

Development of a free wake model to analyze HA WT blade airload under asymmetry condition (수평축 풍력블레이드의 비대칭 환경에서의 공력 해석을 위한 자유후류기법에 관한 연구)

  • Shin, Hyung-Ki;Park, Ji-Woong;Lee, Soo-Gab;Kim, Seok-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.411-414
    • /
    • 2006
  • 풍력 발전기의 블레이드는 다른 회전기와는 달리 항상 지면의 경계층, 요-에러에 의한 어긋난 유입류, 타워와의 간섭효과의 환경에서 운영된다. 따라서 정상운전상태에서도 이와 같은 환경에서 겪게 되는 공력하중의 해석이 블레이드의 설계에서 중요하게 요구된다. 본 연구에서는 이의 비정상 공력하중해석을 위하여 자유후류기법을 이용한 방법을 연구하였다. 특히, 타워와의 간섭해석을 위하여 FVE라 명명한 후류 모델을 개발하여 적용하였다.

  • PDF

The analysis of the cyclic short-term impedance variation factors on the power line channel (전력선 채널의 주기적 임피던스 변화 요인 분석)

  • Jung, Kwang-Hyun;Park, Chong-Yeon;Choi, Won-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1878-1879
    • /
    • 2007
  • 본 논문에서는 전력선을 통신 채널로 사용하였을 때 일어나는 신호의 주기적인 감쇠에 대하여 다루었다. 기존의 연구들은 채널의 주기적인 노이즈에 의한 감쇠에 관하여 다루었다. 그러나 신호의 주기적 감쇠는 부하에 따라 주기적으로 변화하는 임피던스에 의한 영향 또한 고려해야만 한다. 따라서 본 논문에서는 부하에 의한 채널의 주기적인 임피던스 변화를 신호감쇠의 주된 원인임을 실험적으로 밝혀내었다. 또한, 주기적인 신호감쇠에 따른 에러율을 감소시키기 위한 방법을 부하들을 분류하여 논의 하였다.

  • PDF

Implementation and Evaluation of the LUTS Diagnosis System Using FPGA (FPGA를 이용한 LUTS 진단 시스템 구현 및 평가)

  • Jeong, Do-Un;Chung, Wan-Young;Jeon, Gye-Rock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of urodynamic investigation is to determine information on the function of the urinary system. One of the most frequently used measurement procedures in urodynamics is filling and voiding cystometry using invasive method. But in this method transurethral catheter is use and it makes patients uncomfortable. The aim of this study was to implement the system that could evaluate the function of urinary tract with noninvasive and comfortable method. Therefor in this study, a sensor and measuring system were implemented to measure uroflow, urophonography and noninvasive bladder pressure signal during urination for diagnosing the LUTS(lower urinary tract symptoms) using noninvasive method. The implemented system compose of the sensor parts, signal conditioning parts, system control parts using FPGA and PC monitoring program. For the evaluation of the implemented system, the simulation of system's control part was performed and the model system for the lower urinary system was designed. From the evaluation of the model system, the mean error rate of the uroflow measurement part was 1.08% and coefficient of variation was 1,48. And the mean error rate of the noninvasive bladder pressure measurement part was 2.41% and coefficient of variation was 2.81. urophongraphy signal analysis was accomplished in a time domain and frequency domain. Average RMS power was used in a time domain analysis, and MF was used in a frequency domain analysis. From the evaluation of the model system average RMS power and MF was dependent on the occlusion degree significantly and median frequency range of $60{\sim}160Hz$ was correlated with the occlusion.

  • PDF

Analysis of Aircraft Upset through TEM and Improvement of UPRT (항공기 비정상 자세 사고의 TEM 분류 및 UPRT 향상에 관한 연구)

  • Choi, Jin-Kook;Jeon, Seung-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.365-374
    • /
    • 2019
  • Loss of Control in Flight(LOC-I) due to aircraft upset attitude has the highest air accident rate, and International Aviation Institute such as ICAO and FAA recommended flight crew to operate aircraft safely through UPRT(Upset Prevention & Recovery Training) program. ICAO has selected Loss of Control(LOC) as key safety indicator, and recommended to respond using TEM(Threat and Error Management). However there are not much specific treats and errors classified for UPRT programs using real TEM based on evidences. This study intends to consider the importance of UPRT through the introduction of UPRT and accident analysis using TEM. Typical upset accidents were classified to common threats as IFR, inadequate training, Automation surprise, and inexperienced copilots. The common errors were cross-check, speed and altitude deviation, callouts, communication, thrust and stall action fail. The undesired aircraft states were inadequate automation mode, Deviation of speed and vertical, stall, and crash. These suggest areas to improve UPRT.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

Development of Power Demand Forecasting Algorithm Using GMDH (GMDH를 이용한 전력 수요 예측 알고리즘 개발)

  • Lee, Dong-Chul;Hong, Yeon-Chan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, GMDH(Croup Method of Data Handling) algorithm which is proved to be more excellent in efficiency and accuracy of practical use of data is applied to electric power demand forecasting. As a result, it became much easier to make a choice of input data and make an exact prediction based on a lot of data. Also, we considered both economy factors(GDP, export, import, number of employee, number of economically active population and consumption of oil) and climate factors(average temperature) when forecasting. We assumed target forecast period from first quarter 1999 to first quarter 2001, and suggested more accurate forecasting method of electric power demand by using 3-step computer simulation processes(first process for selecting optimum input period, second for analyzing time relation of input data and forecast value, and third for optimizing input data) for improvement of forecast precision. The proposed method can get 0.96 percent of mean error rate at target forecast period.

Trajectory Recognition and Tracking for Condensation Algorithm and Fuzzy Inference (Condensation 알고리즘과 퍼지 추론을 이용한 이동물체의 궤적인식 및 추적)

  • Kang, Suk-Bum;Yang, Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.402-409
    • /
    • 2007
  • In this paper recognized for trajectory using Condensation algorithm. In this pater used fuzzy controller for recognized trajectory using fuzzy reasoning. The fuzzy system tract to the three-dimensional space for raw and roll movement. The joint angle ${\theta}_1$ of the manipulator rotate from $0^{\circ}\;to\;360^{\circ}$, and the joint angle ${\theta}_2$ rotate from $0^{\circ}\;to\;180^{\circ}$. The moving object of velocity display for recognition without error using Condensation algorithm. The tracking system demonstrated the reliability of proposed algorithm through simulation against used trajectory.