• Title/Summary/Keyword: 요 감속기

Search Result 4, Processing Time 0.016 seconds

Yaw Gearbox Design for 4MW Class Wind Turbine (4MW급 풍력발전기용 요 감속기 설계)

  • Lee, Hyoung-Woo;Kim, In-Hwan;Lee, Jae-Shin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.142-148
    • /
    • 2022
  • In this paper, the weight reduction design of the yaw gearbox for wind turbine was performed through the finite element analysis method, and the stability was checked by performing the critical speed analysis. The weight reduction product can improve engine efficiency, save parts materials, and earn economic benefits. The yaw gearbox is lightweighted with the goal of achieving a safety rate of 1.3 or higher for wind turbine as indicated by IEC61400-1. In order to reduce the weight of the carrier, a topology optimization method was performed. The safety factor was verified by performing finite element analysis on the carrier. In addition, the housing and carrier were modeled using the finite element method, and the gear train was modeled using MASTA. For the yaw gearbox, the housing and carrier FE model and the gear train model were connected by the partial structural synthesis method to perform the rotational vibration analysis. Vibration excitation sources are mass unbalance and gear mesh frrequemcy, and as a result of the critical speed analysis, it was found that there was no resonance within the operating speed range.

A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines (8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구)

  • Seo-Won Jang;Se-Ho Park;Young-kuk Kim;Min-Woo Kim;Hyoung-Woo Lee
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

기술현황분석 - 초대형 풍력발전기용 Yaw System의 기술동향

  • Lee, Yong-Beom
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • 전 세계적으로 대체에너지 개발이 활발해지면서 국내에서도 풍력발전에 대한 관심이 높아지고 있다. 풍력발전을 신재생에너지 중에서 가장 상업화에 앞서 있으며 급속한 시장 확대와 산업의 발전을 가져온 분야이다. 1990년대에 개발되어 설치 운용되고 있는 약 20만대의 0.5 MW ~ 3 MW급 중대형 풍력발전기가 세계 여러 곳에서 상업발전을 하고 있으며, 국내에서는 제주도 행원풍력발전단지에 1998년부터 2003년 4월까지 총 15기(약 203억 원 투입)의 풍력 발전기가 도입되어 세워져 있으며, 1998년 8월에 600kW 풍력발전기 1 2호기의 상업운전을 최초로 시작하였다. 최근 풍력발전기의 설치 환경이 육상에서 해상으로 변하면서 5MW급 초대형 풍력발전기의 상용화가 시도되고 있으며 수요 또한 급증하고 있다. 본고에서는 전량 수입에 의존하고 있는 풍력발전기의 핵심 부품인 Yaw system(yaw bearing & drive)의 국내외 시장 동향과 초대형 요 베어링 및 고 강성 유성기어 감속기의 특성을 분석하였으며, 특히 전략적 국산화 개발필요성을 강조하였다.

  • PDF

Dynamics of Angular Running Turns in Foot Effectiveness (각도별 런닝 턴 시 발의 효과에 관한 동역학적 분석)

  • Shin, Seong-Hyoo;Park, Hyun-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.663-669
    • /
    • 2009
  • The purpose of this study was to investigate the functional role of foot effectiveness when humans execute running turn maneuvers. Foot rotation angle at the starting turn and body angle at the vertical axis were analyzed through three-dimensional image analysis and ground reaction force analysis. Then, we created a simple equation: foot effectiveness = total foot rotation angle/total body rotation angle at the vertical axis. This equation made it possible to explain the dynamics of angular running turns. We analyzed data from running turns(0, 30, and 60) at average initial running velocities of 4.5, as well as rotations around the vertical axis during the running turns. As a result, the stance time, foot placement, and left and right force increased.