• Title/Summary/Keyword: 요약 말뭉치

Search Result 23, Processing Time 0.017 seconds

A Sentiment Classification Method Using Context Information in Product Review Summarization (상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.254-262
    • /
    • 2009
  • As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.

Korean Noun Extraction Using Exclusive Segmentation Information and Post-noun morpheme sequences (분석 배제 정보와 후절어를 이용한 한국어 명사추출)

  • 이도길;류원호;임해창
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.19-25
    • /
    • 2000
  • 명사 추출기는 정보검색, 문서분류, 문서요약, 정보추출 등의 분야에서 사용되고 있으며, 정확한 명사 추출과 빠른 색인 속도는 이들 시스템 성능과 밀접한 관계가 있다. 한국어에서 명사를 추출하기 위해서는 형태소 분석이 필요한데, 본 논문에서는 대량의 품사부착된 말뭉치로부터 추출한 분석배제 정보와 후절어를 이용함으로써 형태소 분석을 생략하거나 보다 단순한 처리에 의해 명사를 추출하는 방법을 제안한다. 실험결과에 의하면, 제안된 방법에 의한 명사추출기는 비교적 높은 정확률과 재현율을 나타내며, 빠른 속도를 보였다.

  • PDF

Base-Noun Extraction with filtering and Segmentation in Korean (여과 및 분리 기법을 이용한 한국어 기준명사 추출)

  • 김재훈;김준홍;박호진
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.3-10
    • /
    • 2000
  • 웹의 등장으로 방대한 양의 문서를 다루는 정보검색, 정보추출, 정보요약 등의 분야에서 명사 추출은 대단히 중요한 역할을 담당하는 한 모듈이다. 본 논문에서는 대량의 문서에서 효과적으로 명사를 추출하기 위해 여과기법과 분리기법을 이용한 한국어 기준명사 추출 시스템을 기술한다. 기준명사는 명사들 중에서 기본이 되는 명사로서 복합명사는 제외된다. 본 논문의 기본적인 개념은 먼저 여과기법을 이용해서 명사를 포함하지 않은 어절을 미리 제거하고, 그리고 분리기법을 이용해서 명사가 포함된 어절에서 명사어구와 조사를 분리하고, 복합명사에 해당할 경우에는 각 명사를 분리하여 기준명사를 추출한다. ETRI 말뭉치를 대상으로 실험한 결과, 재헌율과 정확률 모두 약 89% 정도의 성능을 보였으며, 제안된 시스템을 한국어 정보요약 시스템에 적용해 보았을 때, 좋은 결과를 얻을 수 있었다.

  • PDF

Word Representation Analysis of Bio-marker and Disease Word (바이오 마커와 질병 용어의 단어 표현 분석)

  • Youn, Young-Shin;Nam, Kyung-Min;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.165-168
    • /
    • 2015
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.

  • PDF

Korean Noun Extraction Using Exclusive Segmental ion Information and Post-noun morpheme sequences (분석 배제 정보와 후절어를 이용한 한국어 명사추출)

  • Lee, Do-Gil;Ryu, Won-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.19-25
    • /
    • 2000
  • 명사 추출기는 정보검색, 문서분류, 문서요약, 정보추출 등의 분야에서 사용되고 있으며, 정확한 명사 추출과 빠른 색인 속도는 이들 시스템 성능과 밀접한 관계가 있다. 한국어에서 명사를 추출하기 위해서는 형태소 분석이 필요한데, 본 논문에서는 대량의 품사부착된 말뭉치로부터 추출한 분석배제 정보와 후절어를 이용함으로써 형태소 분석을 생략하거나 보다 단순한 처리에 의해 명사를 추출하는 방법을 제안한다. 또한 형태소 분석시 복잡한 음운 현상을 처리하기 위해 많은 음운 규칙을 적용하는 대신 음운 복원 정보를 사용하여 음운 현상을 처리하는 방법을 제안한다. 실험결과에 의하면, 제안된 방법에 의한 명사추출기는 비교적 높은 정확률과 재현율을 나타내며, 빠른 속도를 보였다.

  • PDF

Base-Noun Extraction with Filtering and Segmentation in Korean (여과 및 분리 기법을 이용한 한국어 기준명사 추출)

  • Kim, Jae-Hoon;Kim, Jun-Hong;Park, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.3-10
    • /
    • 2000
  • 웹의 등장으로 방대한 양의 문서를 다루는 정보검색, 정보추출, 정보요약 등의 분야에서 명사 추출은 대단히 중요한 역할을 담당하는 한 모듈이다. 본 논문에서는 대량의 문서에서 효과적으로 명사를 추출하기 위해 여과기법과 분리기법을 이용한 한국어 기준명사 추출 시스템을 기술한다. 기준명사는 명사들 중에서 기본이 되는 명사로서 복합명사는 제외된다. 본 논문의 기본적인 개념은 먼저 여과기법을 이용해서 명사를 포함하지 않은 어절을 미리 제거하고, 그리고 분리기법을 이용해서 명사가 포함된 어절에서 명사어구와 조사를 분리하고, 복합명사에 해당할 경우에는 각 명사를 분리하여 기준명사를 추출한다. ETRI 말뭉치를 대상으로 실험한 결과 재현율과 정확률 모두 약 89% 정도의 성능을 보였으며, 제안된 시스템을 한국어 정보시스템에 적용해 보았을 때, 좋은 결과를 얻을 수 있었다.

  • PDF

Measuring Similarity of Korean Sentences based on BERT (BERT 기반 한국어 문장의 유사도 측정 방법)

  • Hyeon, Jonghwan;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

Biomarker Detection of Specific Disease using Word Embedding (단어 표현에 기반한 연관 바이오마커 발굴)

  • Youn, Young-Shin;Kim, Yu-Seop
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

Biomarker Detection of Specific Disease using Word Embedding (단어 표현에 기반한 연관 바이오마커 발굴)

  • Youn, Young-Shin;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

Korean Base-Noun Extraction and its Application (한국어 기준명사 추출 및 그 응용)

  • Kim, Jae-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.613-620
    • /
    • 2008
  • Noun extraction plays an important part in the fields of information retrieval, text summarization, and so on. In this paper, we present a Korean base-noun extraction system and apply it to text summarization to deal with a huge amount of text effectively. The base-noun is an atomic noun but not a compound noun and we use tow techniques, filtering and segmenting. The filtering technique is used for removing non-nominal words from text before extracting base-nouns and the segmenting technique is employed for separating a particle from a nominal and for dividing a compound noun into base-nouns. We have shown that both of the recall and the precision of the proposed system are about 89% on the average under experimental conditions of ETRI corpus. The proposed system has applied to Korean text summarization system and is shown satisfactory results.