Annual Conference on Human and Language Technology
/
1997.10a
/
pp.28-33
/
1997
이 논문에서는 문장 유사도 측정 기법과 말뭉치 정보를 이용한 문서요약 시스템을 구현하였다. 문서 요약은 문서에서 문장 단위로 단어를 추출하여 문장을 단어의 벡터로 표현하고, 문서 내 단어의 출현빈도와 말뭉치 내 단어의 사용빈도를 이용하여 각 문장의 중요도를 계산한다. 그리고 중요도가 높은 상위 몇 위의 문장을 요약문장으로 추출한다. 실험 결과, 문서내 단어빈도의 중요도를 낮추고, 말뭉치내 일반 사용빈도를 단어의 가중치에 추가했을 때 가장 좋은 효율을 보였다. 또 요약하고자 하는 문서와 유사한 말뭉치를 사용 했을 때 높은 효율을 보였다.
Younggyun Hahm;Yejee Kang;Seoyoon Park;Yongbin Jeong;Hyunbin Seo;Yiseul Lee;Hyejin Seo;Saetbyol Seo;Hansam Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.192-197
/
2022
요약 연구의 주류는 아직 문서를 대상으로 하지만, 최근에는 회의 요약 연구에 대한 관심이 크게 높아지고 있다. 본 연구는 국립국어원 국어 빅데이터 구축 사업의 일환으로 국내에서 아직 연구되지 않은 국회 회의록 생성 요약에 대해 연구를 진행하였으며, 국회 회의록에 대한 생성 요약 데이터세트를 구축하였다. 또한 생성 요약 모델을 통해 구축된 데이터세트에 대한 정량 및 정성적 평가를 진행함으로써 국회 회의록 요약 데이터세트에 대한 평가 및 향후 생성 요약과 회의록 요약의 연구 방향을 모색하였다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.309-313
/
2017
개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.
개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.
Seo, Hyung-Won;Kim, Hyung-Chul;Cho, Hee-Young;Kim, Jae-Hoon;Yang, Sung-Il
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.161-164
/
2006
인터넷이 발전하면서 웹에는 같은 내용을 다양한 언어로 표현한 문서들이 많이 존재한다. 이와 같은 웹 문서의 성질을 이용하여, 이 논문은 웹으로부터 수집된 병렬문서(parallel document)를 이용하여 한영 병렬말뭉치 구축 시스템을 설계하고 구현한다. 이 논문에서 구축과정을 요약하면 다음과 같다. 첫째, 웹 문서수집기를 이용해서 웹으로부터 한영 웹문서(html 문서)를 각각 수집한다. 둘째, 수집된 각 언어의 웹 문서에서 불필요한 내용(태그와 광고 문구 등)을 제거하여 문장을 추출하고, 추출된 문장을 단락단위로 정렬한다. 셋째, 단락단위로 정렬된 문서를 문장정렬(sentence alignment) 방법을 이용해서 문장을 정렬한다. 끝으로 정렬된 병렬문장을 단어 단위로 분리하여 병렬말뭉치를 구축한다. 이와 같은 방법으로 이 논문에서는 약 42만 5천 문장의 한영 병렬말뭉치를 구축하였다.
Kim, Seokyung;Cho, Yunhui;Heo, Sehun;Jung, Sangkeun
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.280-283
/
2020
논문 초록은 논문의 내용을 요약해 제시함으로써 독자들의 연구결과물에 대한 빠른 검색과 이해를 도모한다. 초록의 구성은 대부분 전형적인 경우가 많기 때문에, 초록의 구조를 자동 분석하여 색인해두면 유사구조 초록을 검색하거나 생성하는 등의 연구효율화에 기여할 수 있다. 허세훈 외 (2019)는 초록 자동구조화를 위한 말뭉치 SPA2019 및 기계학습기반의 자동구조화 방법을 제시하였다. 본 연구는, 기존 SPA2019 의 구조화 오류를 바로잡고, SPA2019 에서 추출한 1,346 개의 초록데이터와 2,385 개의 초록데이터를 추가한 SPA2020 말뭉치를 새로이 소개한다. 또한, 다양한 선학습 기반 트랜스포머들을 활용하여 초록 자동구조화를 수행하였으며, 그 결과 BERT-0.86%, RoBERTa-0.86%, ALBERT-0.84%, XLNet-0.86%, DistilBERT-0.85% 등의 자동구조화 성능을 보임을 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.382-385
/
2007
본 논문은 "X라는 인물은 누구인가?"와 같은 질의어가 주어질 때, X라는 인물에 대한 나이, 직업, 학력 또는 특정 사건에서 X라는 인물의 역할에 대한 정보를 기술하는 문장을 인식하고 추출함으로써 해당 인물에 대한 신문 기사 내용을 요약하는 방법을 제시한다. 질의어 용어에 대해 가능한 많은 관련 문장을 추출하기 위하여 중심 벡터에 기반한 통계적 방법을 적용하였으며, 정확도와 재현율 성능을 개선하기 위해 위키피디어 같은 외부 지식을 사용한 중심 단어의 개선된 가중치 측도를 적용하였다. 실험 대상인 전자신문 말뭉치 상에서 출현 빈도수가 큰 20 인의 IT 인물에 대해 제안한 방법이 개선된 성능을 보임을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.175-177
/
1999
본 논문에서는 수사 정보와 문장간 유사도를 이용하여 문서의 수사 구조 트리를 생성하는 방법을 제안하였다. 말뭉치에서 찾아낸 수사 정보를 종류별로 분류하고, 이를 사용해서 문서 내의 수사 정보를 추출해서 가능한 모든 구조를 생성한다. 다음으로 문장간의 유사도를 사용해서 가중치가 가장 높은 하나의 구조를 선택한다. 생성된 수사 구조를 사용하여 문서를 요약할 수 있는데, 수사 정보는 언어적 특성을 이용하는 것이므로 모데인에 독립적인 요약 시스템을 만들 수 있다.
Annual Conference on Human and Language Technology
/
2005.10a
/
pp.167-172
/
2005
지금까지 자연언어처리에서의 품사태깅(parts-of-speech tagging) 기술에 대한 연구는 활발히 진행된 반면, 전문용어에 대한 처리 기술은 미비한 점이 많았다. 전문용어에 관련된 연구는 대부분 구축, 표준화, 추출 등에 대한 연구가 많았으나 전문용어 태그 설정과 태깅 기술 연구는 부족한 상황이다. 본 논문에서는 전문용어 태그를 (분야정보: 아이디) 순으로 설정하고 백과사전의 분류 체계를 이용하여 어떤 특정 분야 문서의 전문용어를 자동으로 태깅하는 시스템을 구축하였다. 전문용어 태깅 시스템은 형태소분석기를 사용하지 알고 문맥의 규칙과 조사 어미사전을 이용해 자동으로 태깅을 하게 된다. 이 시스템의 정확률 측정을 위한 정답말뭉치는 웹 상에 공개되어 있는 백과사전 html문서를 이용하였다. 우선 백과사전에 나와있는 용어는 전문용어라고 가정한다. 하나의 문서에는 '용어', '요약', '본문', '이미지', '분류', '참조항목' 등의 정보들이 있다. 이 중 '본문'에는 그 용어에 대한 자세한 설명이 있는데 특정 단어에는 태그로 백과사전 내에 있는 단어를 찾아 볼 수 있게 링크 되어있다. 이 정보를 이용해 태그로 되어있는 것을 설정한 태그로 바꾸고 단계별로 확장 태깅을 해서 정답말뭉치를 만든다. 태깅 시스템과 정답말뭉치를 비교해 정확률을 계산해서 시스템의 성능을 측정하였다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.501-503
/
2012
오피니언 마이닝에서 특징기반으로 상품평을 요약할 때, 동일한 상품의 같은 특징에 대한 사용자의 표현이 일치하지 않아 같은 특징을 다른 것으로 인식하는 오류가 발생되어 효과적인 분석을 하는데 어려움이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 온라인쇼핑몰의 상품평에서 명사와 형용사쌍 말뭉치를 이용하여 연관단어뭉치를 추출하고, 상관성이 높은 형용사를 각 명사의 특징으로 이용하여 대체어 목록을 자동으로 추출하는 방법을 제안한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.