• Title/Summary/Keyword: 요소 가수분해

Search Result 56, Processing Time 0.023 seconds

Effects of Functional Properties of Soy Protein Isolate and Qualities of Soybean Curd upon Proteolytic Hydrolysis (효소처리가 대두단백질의 기능특성과 두부의 품질에 미치는 영향)

  • Han, Jin-Suk;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.294-299
    • /
    • 1992
  • This study was to examine the effect of functional properties of soy protein isolate(SPI) and qualities of soybean curd upon proteolytic hydrolysis. SPI was hydrolyzed using proteolytic enzyme, bromelain. The protein content of SPI by microkjeldahl method was 84% and the degree of hydrolysis in modified soy protein isolate(MSPI) was 2.7%. The solubility of MSPI was higher than that of control at various pH tested and proteolytic hydrolysis was increased emulsion formation and foam expansion while decreased emulsion stability, foam stability and calcium precipitation. Modified soybean curdI, standard soybean milk: Modified soybean milk=3:1, was soft and springy soybean curd when the texture properties of soybean curd were tested by texture profile analysis using Instron and sensory evaluation. The rheological model of soybean curds was investigated by stress relaxation test. The analysis of relaxation curve revealed that the rheological behavior of soybean curds could be expressed by 7-element generalized Maxwell model. The equilibrium modulus and modulus of elasticity decreased as the ratio of modified soybean milk was increased.

  • PDF

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion (혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술)

  • Kim, Dong-Jin
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.355-369
    • /
    • 2013
  • Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Medium Density Fiberboard (MDF) (유채박 가수분해물을 이용한 중밀도섬유판(MDF) 제조용 접착제의 개발)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2012
  • The interest to develop adhesives from renewable resources is growing to substitute petroleum-based adhesive resins in the manufacture of wood based panels. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed with acid and alkali. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the medium density fiberboard (MDF). The physical and mechanical properties of the MDF were measured to examine whether RSF can be used as raw materials of adhesive resins for the manufacture of MDF or not. The average moisture content and density of the MDF made with RSF-based adhesive resins satisfied the minimum requirement of KS standard, but the thickness swelling was not. The bending strengths of the MDF made with RSF-based adhesive resins were lower than that of the MDF made with commercial UF resins, but the internal bonding strengths of tested MDF in some make-up conditions of RSF-based adhesive resins were higher than that of MDF made with commercial UF resins. These results showed the potential of RSF as a raw material of adhesives for the production of MDF. Future works on the optimal manufacturing process conditions of MDF made with RSF-based adhesive resins are required to improve the performance of MDF made with RSF-based resins.

ESCA를 이용한 노화된 종이의 표면 변화 특성 관찰

  • 양봉숙;김형진;조병묵;오정수
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.139-139
    • /
    • 2000
  • 종이는 제조 후 시간의 경과에 따라 노화가 야기되기 시작하며 이에 수반되는 현상으로서 종이의 기계적 강도 손실 및 종이의 색 변화를 들 수 있다. 종이의 노화 현상은 주로 빛, 열, 대기 오염물질, 미생물, 곤충 및 화학약품 등의 외부 인자들에 의해 종이 내에서의 가수 분해 또는 산화작용을 발생시키며 이는 종이의 폭넓은 이용올 제한하는 중요한 원인이 되고 있다. 종이의 노화기작은 주로 산 가수분해 및 산화작용 그리고 가교결합 둥으로 해석되고 있다. 이는 종이의 주 구성요소인 셀룰로오스의 수산기가 반웅하여 카르보닐기를 형성하면 서 저분자화 되거나 산소에 의해 산화되면서 저분자화 되어 종이의 강도적 손실이 일어난다 고 보고되고 있으며 종이의 황색화(Yellowing) 현상은 주원인이 종이에 잔존하고 있는 리그 년이 빛과 열에 의해 반응하여 산화됨으로써 야기된다고 설명되고 있다. 즉, 열이나 자외선 및 가시광션의 조사로 인한 셀룰로오스 및 기타 종이 구성물의 산화에 의해 종이가 퇴색되 거나 강도가 저하되는 현상이 일어나게 된다. 특히 이러한 노화 거동은 상온의 경우에서는 펄프와 종이의 황색화가 천천히 일어나지만 옹도가 점차 올라갈수록 그 속도는 빨라진다. 종이가 노화되면서 일어나는 산화반용은 주로 대기 중의 산소와 접촉하기 쉬운 표변에서부 터 발생하기 쉽다. 열처리를 통해 표면에서의 산화 작용은 촉진되고 종이의 구성원소의 결 합에 화학적 변화가 야기된다. 이를 분석하기 위해서 모든 원소가 독특한 결합에너지를 가 지고 있다는 것에 착안 시료 표면에 특정 x-선 및 전자빔을 입사하여 방출하는 광전자의 에너지를 측정함으로써 시료 표면의 조성 및 화학적인 결합상태를 알 수 있는 ESCA ( (Electron Spectroscopy for Chemical Analysis)를 이용하였다 .. ESCA는 주로 표면 원소의 규 명 및 정량분석과 화학결합 상태의 정성, 정량 분석, 깊이에 따른 원소의 농도 분포 분석, 고분자화합물의 특성 조사, 표면 원소의 화학결합에 따른 전자상태 연구 둥에 활용되 고 있 다. 즉, 종이가 노화되면서 원소들 사이에 변화되는 결합을 이러한 에너지 분석에 의해 원소 정성분석 또는 정량분석을 하고자 하였으며, 이를 분석하여 열처리 시 종이 표면에서 일어 나는 변화를 구명하고자 하였다. 이에 따라 본 연구에서는 종이의 노화를 가속화시키는 빛, 대기오염물질, 및 기타 다른 인 자들은 배제하고 열 만을 가해 노화의 진행속도를 높인 후, 노화 진행 시 종이 표변에 일어 나는 산화작용 및 가수분해를 표면 분석 장치인 ESCA를 이용하여 종이의 주 구성원소인 탄소와 산소가 열처리 시 변하는 에너지를 측정하였다. 또한 카르복실기 정량과 종이의 pH 측정 및 X -ray Diffractometer를 이용하여 결정화도를 측정하였다. 본 연구의 결과, 시간의 경과에 따라서 탄소의 결합에너지는 분포가 C-H에서 COO-, 또는 C=O로 달라짐으로써 종 이가 산화되고 있다는 것을 알 수 있었다. 또한 이 결합에너지 분포의 변화가 펄프의 종류 에 따라서 다르게 이동함으로써 제조된 시트의 표면 산화반응이 서로 다르게 일어나고 있음 을 알 수 있었으며, 이는 사용한 펄프의 화학 조성분의 차이에 기인한 것이라 사료된다.

  • PDF

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules (태양전지모듈용 고내구성 저가형 백시트)

  • Pyo, Se Youn;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.

Properties of Plywood Bonded with Adhesive Resins Formulated with Enzymatically-Hydrolyzed Rapeseed Flour (유채박의 효소 가수분해물로 조제한 접착제를 사용한 합판의 접착특성)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.164-176
    • /
    • 2012
  • In the present study, rapeseed flour (RSF), which is a by-product from the production of edible oil and biodiesel extracted from rapeseed, was used to develop alternative adhesives for the production of plywood panels. To examine the effects of the enzyme on the adhesive properties and formaldehyde emission of the RSF-based adhesive resins, three enzymes, such as cellulase (CEL), pectinase (PEC) and protease (ALC), were used either separately or together. As a crosslinking agent, PF prepolymers, which were prepared with 1.5, 1.8 and 2.1 mole formaldehyde and 1 mol phenol (1.8-, 2.1- and 2.4-PF), were added into the RSF hydrolyzates. The adhesive resins formulated with CEL- or CEL-PEC-RSF hydrolyzates and 1.8-F/P PF prepolymers exhibited excellent adhesive strengths and formaldehyde emission. The tensile shear strength and formaldehyde emission of the plywood panels bonded with the formulate resins were satisfied with the minimum requirement of the KS standard for ordinary plywood panels (0.6 N/$mm^2$). In addition, formaldehyde emissions of the plywood panels approached to that of E0 specified in the KS standard (0.5 mg/${\ell}$), and even had much better than those of commercial UF glue mixes. Overall, the use of RSF-based adhesive resins for the production of plywood panels might provide durable adhesive properties and an environmentally friendly substitute for petroleum-based adhesive resins. However, further researches - the increase of solid content of RSF-based adhesives for reducing press time and the microscopic observation of plywood specimen for identifying the relationship between tensile shear strength and the penetration of adhesives into wood structure - are required to commercialize the RSF-based adhesives.

Distribution of Inorganic N from Fertigated and Broadcast-applied 15N-Urea along Drip Irrigation Domain (점적관수시 관비와 표면시비된 중질소 표지요소의 행동비교)

  • Yoo, Sun-Ho;Jung, Kang-Ho;Ro, Hee-Myong;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.292-301
    • /
    • 2001
  • The objectives of this study were to measure the changes in soil moisture regimes and the distribution patterns of inorganic N derived from the fertigated $^{15}N$-labeled urea, and compare them with the results obtained from broadcast-applied soil under the same drip irrigation domain. In fertigated soil, a $^{15}N$-labeled urea solution of $117mg\;N\;L^{-1}$ was applied by surface drip irrigation for 4 weeks. In broadcast-applied soil, no the other hand, 4 g of $^{15}N$-labeled urea(1.87 g N) mixed thoroughly with 5 kg of soil was placed on the surface of packed soil. Soil water status was controlled by drip irrigation scheduled at soil matric potential of -50 kPa. A calibrated time-domain reflectometry probe was installed in the soil vertically 15 cm apart from a drip emitter to control drip irrigation. About 60% of urea-derived inorganic nitrogen was remained in the top zone between 0 and 10 cm depth of fertigated soil, while, most of the inorganic nitrogen (91%) was accumulated in the top zone of broadcast-applied soil. Of inorganic nitrogen derived from urea, the percentage of $NO_3{^-}$ was much higher for fertigation (99%) than for surface application (62%). The relatively lower recovery of urea-derived inorganic nitrogen of broadcast-applied urea-N (51%) than that of fertigated urea-N (89%) was attributable to enhanced $NH_3$ volatilization.

  • PDF

Identification and molecular characterization of the chitinase gene, EaChi, from the midgut of the earthworm, Eisenia andrei (붉은줄지렁이 (Eisenia andrei) 중장에서 발현되는 chitinase 유전자, EaChi의 동정 및 분자생물학적 특성에 관한 연구)

  • Tak, Eun Sik;Kim, Dae hwan;Lee, Myung Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • Chitinases (EC 3.2.1.14) hydrolyze the ${\beta}$-1,4-linkages in chitin, the second most abundant polymer of N-acetyl-${\beta}$-D-glucosamine which is a structural component of protective biological matrices such as fungal cell walls and insect exoskeletons. The glycosyl hydrolases 18 family including chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Since earthworms live in the soil with a lot of microbial activities and fungi are supposed to be a major component of the diet of earthworm, it has been reported that there would be appropriate immune system to protect themselves from microorganisms attacks. In this study, the novel chitinase, EaChi, from the midgut of earthworm, Eisenia andrei, were identified and characterized. To obtain full-length cDNA sequence of chitinase, RT-PCR and RACE-PCR analyses were carried out by using the previously identified EST sequence amongst cDNA library established from the midgut of E. andrei. EaChi, a partial chitinase gene, was composed of 927 nucleotides encoding 309 amino acids. By the multiple sequence alignments of amino acids with other different species, it was revealed that EaCHI is a member of glycosyl hydrolases 18 family, which has two highly conserved domains, substrate binding and catalytic domain.

Ultrasonic and Alkaline Pre-treatments of Waste Activated Sludge for Enhancing Anaerobic Digestion (혐기성 소화를 위한 폐활성슬러지의 초음파와 알칼리 전처리)

  • Park, In Geun;Son, Han Hyung;Lee, Chae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.53-63
    • /
    • 2018
  • The hydrolysis of organic solid waste, such as sludge, is the rate-limiting step of the anaerobic digestion. The longer rate-limiting step lead to decrease of treatment efficiency and increase hydraulic retention time and anaerobic digester. Therefore, the pre-treatment has been applied for accelerating the hydrolysis step. This study was investigated the effects of pre-treatment of waste activated sludge using ultrasonic and alkaline integrated treatment simultaneously. The results showed the cumulative methane production and the methane production rate increased while the lag phase decreased. Therefore ultrasonic and alkaline integrated pre-treatment of waste activated sludge resulted in acceleration of hydrolysis step in anaerobic digestion.

Fabrication of Cu-doped PPy electrode for urea sensor (요소측정용 바이오센서를 위한 Cu-doped PPy electrode의 제작)

  • Yang, Jung-Hoon;Jin, Joon-Hyung;Song, Min-Jung;Yoon, Dong-Hwa;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2000-2002
    • /
    • 2002
  • 신장병의 조기진단을 위해서 체내의 요소 농도의 정확한 측정은 매우 중요하며, 이러한 이유에서 많은 연구자들은 보다 빠르고 정확한 체내의 요소농도 측정을 위한 바이오센서를 개발 중이다. 본 논문은 반도체 공정을 이용하여 산화막(4.000${\AA}$)이 성장된 p-형 실리콘 웨이퍼를 사용하였다. RF sputter를 사용하여 티타늄과 백금을 증착한 백금 박막전극을 제작하였다. 그 위에 전도성 고분자인 Polypyrrole(PPy)과 전도도를 증가시키기 위하여 구리를 도펀트로 사용 scan rate 40mV/S $0.8{\sim}-0.8V$ 전위영역에서 산화적 전기 중합법 (anodical electropolymerization)을 이용하여 전극을 형성하였다. 요소를 2개의 암모늄 이온과 1개의 탄산 이온으로의 가수분해반응을 촉매하는 효소로써 유레이즈(urease)를 전기적 흡착방법을 이용하여 고정화하고 이에 요소농도의 변화에 대하여 시간대 전류법 (chronoamperometry:CA)을 사용하여 감도를 측정하였다. 최적화된 조건하에서 요소농도에 비례하여 Cu-doped PPy electrode로부터 얻어진 확산한계전류는 $4.5{\mu}A$/decade의 기울기를 나타내었다. 전극의 표면은 SEM(Scanning Electron Microscopy)과 EDX(Energy Dispersive X-Ray Spectrometer)를 이용하여 분석 하였다.

  • PDF