• Title/Summary/Keyword: 요소망 자동생성

Search Result 68, Processing Time 0.025 seconds

The Development of the Automatic Triangular Mesh Generation Software Using Modified Lo's Algorithm (수정된 Lo의 요소망 생성 알고리즘은 이용한 자동 삼각 요소망 생성 소프트웨어의 개발)

  • 김병옥;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • For last two decades numerous automatic mesh generation algorithms for various two dimensional objects have been introduced continuously and among them triangular mesh generation schemes have been majority because of efficiency and controllability. In our study, an existing triangular mesh generation algorithm developed by Lo is totally modified to more improve node distribution, element shape, and objects shape independency. ft is composed of node generation part and element generation part. In order to find a suitable node position within geometry, the suggested algorithm searches desirable positions of points within boundary and optimizes node position to generate comparatively well-shaped elements. More over, the suggested algorithm handles various complex two dimensional objects and its meshing speed shows superiority to those of the existing triangulation mesh generation algorithms. It is fully automated in a sense of constructing object boundary and hence can be directly used as an independent meshing software.

  • PDF

Automatic Mesh Generation on Poorly Parameterized NURBS Surfaces (불균일한 매개변수로 정의된 NURBS 곡면에서의 요소망 자동 생성)

  • 채수원;박정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.189-196
    • /
    • 2003
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate points are sampled on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then, mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

2.5 Dimensional Hexahedral Mesh Generation by Mapping Algorithm (매핑 알고리즘을 이용한 2.5차원 입체에 대한 육면체 요소망 자동 생성)

  • Choi C.H.;Chae S.W.;Kwon K.Y.;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.423-424
    • /
    • 2006
  • This paper proposes a hexahedral mesh generation scheme based on mapping approach and improves the drawback of sweeping algorithm. In order to improve the drawback, the algorithm in this paper generates hexahedral meshes by three dimensional element mapping first. Then hexahedral meshes are equivalent to geometry of the volume by mapping and smoothing. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

  • PDF

Automatic Generation of Finite Element Meshes by Regenerating NURBS Surfaces (NURBS 곡면 재생성을 통한 유한 요소망의 자동 생성)

  • 박정민;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.784-787
    • /
    • 2002
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate Points are sample on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then. mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

  • PDF

The Development of Intelligent On-line Quiz Authoring Tool based on Bayesian Inference Network (베이지언 추론망 기반 지능형 온라인 퀴즈 저작도구의 개발)

  • Park, Hong-Joon;Jun, Young-Cook
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, we present an on-line quiz authoring software that helps teachers create an intelligent on-line quiz. It is designed to give each student appropriate diagnostic report using Bayesian inference networks that represent the relationships among knowledge-items. Once the authors design and edit quizzes in quiz authoring page, the authoring tool automatically produces a knowledge-model based on Bayesian inference network, on-line quizzes, and student report pages. It turns out that the on-line quizzes generated by this tool help students identify their weak parts of subject, make learning strategies for the next learning steps and carry out supplementary learning for their weak knowledge-items.

Automatic Triangular Mesh Generation Over B-Spline Surfaces Including Arbitrary Holes (임의의 구멍을 포함하는 B-Spline 곡면상에서의 자동 삼각 요소망 생성)

  • 김근호;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • In the process of finite element analysis, mesh generation is tedious job which consumes tremendous time. Therefore, the automation of well shaped mesh generation from the minimal boundary input data is desirable to improve reliability and accuracy of the analysis and also to reduce the process time of the entire design process. The automation of triangular mesh generation has been relatively well treated due to its robustness and ease of handling when compared to rectangular element mesh generation. In this study, the offset method developed previously for generating plane rectangular element mesh has been corrected and modified to generate triangular element mesh on the B-spline surface having arbitrary holes. The result shows that the generated triangular mesh has the average aspect ratio over 0.9. The designed arbitrary surface shape has been interactively constructed by non-uniform B-spline theory for triangular mesh generation.

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements (다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성)

  • Sohn, Dongwoo;Park, Jong Youn;Cho, Young-Sam;Lim, Jae Hyuk;Lee, Haengsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2014
  • Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

Automatic Tetrahedral Mesh Generation using 3-D Operators (3-D 오퍼레이터를 이용한 사면체 요소망의 자동 생성)

  • 권기연;채수원;이병채
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • A tetrahedral mesh generation scheme using 3-D operators has been presented. The proposed scheme employs new 3-D operators such as rearranging and modified finishing operators in addition to the previous trimming, wedging, digging, splitting and finishing operators. These new operators have been introduced in order to increase the stability of mesh generation process. Check processings with surrounded element edges and faces have also been optimized by employing a searching algorithm. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

Automatic 3-Dimensional Mixed Mesh Generation by Using an Advancing Front Method (전진경계법을 이용한 삼차원 혼합요소망 자동생성)

  • Han J.N.;Chae S.W.;Kwon K.Y.;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.419-420
    • /
    • 2006
  • This paper deals with a hex-dominant mesh generation using an advancing front method for three-dimensional geometries. Hexahedral and prismatic meshes are generated inwardly by offsetting from initial boundary mesh. When the meshes intersect with each other after offsetting, overlapped meshes are improved by node relocation method. In order to generate conforming mesh, pyramid elements are inserted between hexahedral and tetrahedral elements. Sample meshes fur several geometries are presented and analized to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.