• Title/Summary/Keyword: 왜곡상수

Search Result 45, Processing Time 0.022 seconds

The Crystal and Molecular Structure of (dl)-2-Benzyl-4-ethylester-5-(p-methylphenyl)-3H,5H,6H-1,2,6-thiadiazine-1,1-dioxide, $C_{20}H_{22}N_2O_4S$ ((dl)-2-Benzyl-4-ethylester-5-(p-methylphenyl)-3H,5H,6H-1,2,6-thiadiazine-1,1-dioxide, $C_{20}H_{22}N_2O_4S$의 結晶 및 分子構造)

  • Shin, Hyun-So;Kim, Euisung;Song, Hyun;Lee, Chai-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.344-349
    • /
    • 1995
  • The crystal and molecular structure of the title compound has been determined from 2568 reflections collected on an automatic CAD4 diffractometer using graphite-monochromated $Mo-K\alpha$ radiation. The crystal is monoclinic system, space group $P2_1$ with unit cell dimensions $a=8.756(8)\AA$, $b=25.757(2)\AA$, $c=8.628(1)\AA$, $\beta=99.15(4)^{\circ}$, V= 1,921(2) ${\AA}^3$, Z=4, $D_C=1.336\;g/cm^3$, ${\mu}=1.54\;cm^{-1}\;and\;T=298^{\circ}K$. The final R factor was 0.051 for 2049 reflections over $3{\sigma}(Fο).$ The crystal has two asymmetric molecules in the unit cell. The arrangement of sulfon group was shown a distorted tetrahedron structure and N(6), N(6') atoms were deviated from the least-squares planes of the thiadiazine rings, respectively. The molecular packings in the unit cell are linked by the two intermolecular hydrogen bonds of N-H---O type and van der Waals forces.

  • PDF

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

Equity-Efficiency Trade-off: the Case of Inheritance Tax (상속세(相續稅)에 있어서의 형평(衡平)과 효율성(效率性)의 괴리(乖離))

  • Moon, Hyung-pyo
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.97-111
    • /
    • 1990
  • This paper examines the effect of redistributive inheritance tax on income distribution and social welfare. The model used here is the Overlapping-Generations Model consisting of individuals with different bequest motives where the lifetime income distribution in each cohort is determined endogeneously by the dynamic bequest process. It is shown that the introduction of redistributive inheritance tax can improve the vertical equity in the sense that the increase in tax rate reduces the coefficient of variations of intra-cohort income distribution in steady-state. However, it is also shown that, the effect on social welfare, when measured by Benthamite SWF, is uncertain in general. The numerical simulations show that, in spite of its equity-enhancing effect, the tax increase can actually lower the steady-state social welfare within the plausible range of parametric values, through the long-run output effect as well as the deadweight welfare loss incurred by tax distortion. Hence, the problem of equity-efficiency trade-off can arise in this case. However, if both the market interest rate and the elasticity of marginal utility in individual's preference function are sufficiently high, it is shown to be possible that the steady-state social welfare is enhanced by the introduction of inheritance tax.

  • PDF

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery (고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가)

  • Seong, Seon Kyeong;Seo, Doo Chun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.563-569
    • /
    • 2021
  • With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.