• Title/Summary/Keyword: 완전 균형 트리 구조

Search Result 3, Processing Time 0.014 seconds

Binary Search Tree with Switch Pointers for IP Address Lookup (스위치 포인터를 이용한 균형 이진 IP 주소 검색 구조)

  • Kim, Hyeong-Gee;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.57-67
    • /
    • 2009
  • Packet forwarding in the Internet routers is to find out the longest prefix that matches the destination address of an input packet and to forward the input packet to the output port designated by the longest matched prefix. The IP address lookup is the key of the packet forwarding, and it is required to have efficient data structures and search algorithms to provide the high-speed lookup performance. In this paper, an efficient IP address lookup algorithm using binary search is investigated. Most of the existing binary search algorithms are not efficient in search performance since they do not provide a balanced search. The proposed binary search algorithm performs perfectly balanced binary search using switch pointers. The performance of the proposed algorithm is evaluated using actual backbone routing data and it is shown that the proposed algorithm provides very good search performance without increasing the memory amount storing the forwarding table. The proposed algorithm also provides very good scalability since it can be easily extended for multi-way search and for large forwarding tables

A Balanced Binary Search Tree for Huffman Decoding (허프만 복호화를 위한 균형이진 검색 트리)

  • Kim Hyeran;Jung Yeojin;Yim Changhun;Lim Hyesook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.382-390
    • /
    • 2005
  • Huffman codes are widely used for image and video data transmission. As the increase of real-time data, a lot of studies on effective decoding algorithms and architectures have been done. In this paper, we proposed a balanced binary search tree for Huffman decoding and compared the performance of the proposed architecture with that of previous works. Based on definitions of the comparison of codewords with different lengths, the proposed architecture constructs a balanced binary tree which does not include empty internal nodes, and hence it is very efficient in the memory requirement. Performance evaluation results using actual image data show that the proposed architecture requires small number of table entries, and the decoding time is 1, 5, and 2.41 memory accesses in minimum, maximum, and average, respectively.

Weighted Binary Prefix Tree for IP Address Lookup (IP 주소 검색을 위한 가중 이진 프리픽스 트리)

  • Yim Changhoon;Lim Hyesook;Lee Bomi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.911-919
    • /
    • 2004
  • IP address lookup is one of the essential functions on internet routers, and it determines overall router performance. The most important evaluation factor for software-based IP address lookup is the number of the worst case memory accesses. Binary prefix tree (BPT) scheme gives small number of worst case memory accesses among previous software-based schemes. However the tree structure of BPT is normally unbalanced. In this paper, we propose weighted binary prefix tree (WBP) scheme which generates nearly balanced tree, through combining the concept of weight to the BPT generation process. The proposed WBPT gives very small number of worst case memory accesses compared to the previous software-based schemes. Moreover the WBPT requires comparably small size of memory which can be fit within L2 cache for about 30,000 prefixes, and it is rather simple for prefix addition and deletion. Hence the proposed WBPT can be used for software-based If address lookup in practical routers.