• Title/Summary/Keyword: 완전연결계층

Search Result 33, Processing Time 0.025 seconds

A Bulge Detection Model in Cultural Asset images using Ensemble of Deep Features (심층 특징들의 앙상블을 사용한 목조 문화재 영상에서의 배부름 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.129-131
    • /
    • 2021
  • 본 논문에서는 심층 특징 앙상블을 사용하여 목조 문화재의 변위 현상 중 하나인 배부름 현상을 감지할 수 있는 모델을 제안한다. 우선 총 4개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 4개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 심층 특징 앙상블 기법을 사용한 모델이 앙상블 기법을 사용하지 않은 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로 부터 우리가 제안한 방법이 목재 문화재의 배부름 현상에 대한 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation (객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

An Ensemble Deep Learning Model for Measuring Displacement in Cultural Asset images (목조 문화재 영상에서의 변위량 측정을 위한 앙상블 딥러닝 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.141-143
    • /
    • 2021
  • 본 논문에서는 목조 문화재의 변위량을 감지할 수 있는 앙상블 딥러닝 모델 모델을 제안한다. 우선 총 2개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 2개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위의 심각 단계에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 앙상블 딥러닝 기법을 사용한 모델이 앙상블 기법을 사용하지 않는 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위량 예측에 있어서 매우 적합함을 보여준다.

  • PDF

Coin Classification using CNN (CNN 을 이용한 동전 분류)

  • Lee, Jaehyun;Shin, Donggyu;Park, Leejun;Song, Hyunjoo;Gu, Bongen
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.63-69
    • /
    • 2021
  • Limited materials to make coins for countries and designs suitable for hand-carry make the shape, size, and color of coins similar. This similarity makes that it is difficult for visitors to identify each country's coins. To solve this problem, we propose the coin classification method using CNN effective to image processing. In our coin identification method, we collect the training data by using web crawling and use OpenCV for preprocessing. After preprocessing, we extract features from an image by using three CNN layers and classify coins by using two fully connected network layers. To show that our model designed in this paper is effective for coin classification, we evaluate our model using eight different coin types. From our experimental results, the accuracy for coin classification is about 99.5%.

Scheduling Algorithm using DAG Leveling in Optical Grid Environment (옵티컬 그리드 환경에서 DAG 계층화를 통한 스케줄링 알고리즘)

  • Yoon, Wan-Oh;Lim, Hyun-Soo;Song, In-Seong;Kim, Ji-Won;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.71-81
    • /
    • 2010
  • In grid system, Task scheduling based on list scheduling models has showed low complexity and high efficiency in fully connected processor set environment. However, earlier schemes did not consider sufficiently the communication cost among tasks and the composition process of lightpath for communication in optical gird environment. In this thesis, we propose LSOG (Leveling Selection in Optical Grid) which sets task priority after forming a hierarchical directed acyclic graph (DAG) that is optimized in optical grid environment. To determine priorities of task assignment in the same level, proposed algorithm executes the task with biggest communication cost between itself and its predecessor. Then, it considers the shortest route for communication between tasks. This process improves communication cost in scheduling process through optimizing link resource usage in optical grid environment. We compared LSOG algorithm with conventional ELSA (Extended List Scheduling Algorithm) and SCP (Scheduled Critical Path) algorithm. We could see the enhancement in overall scheduling performance through increment in CCR value and smoothing network environment.

Design and Implementation of CNN-Based Human Activity Recognition System using WiFi Signals (WiFi 신호를 활용한 CNN 기반 사람 행동 인식 시스템 설계 및 구현)

  • Chung, You-shin;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.299-304
    • /
    • 2021
  • Existing human activity recognition systems detect activities through devices such as wearable sensors and cameras. However, these methods require additional devices and costs, especially for cameras, which cause privacy issue. Using WiFi signals that are already installed can solve this problem. In this paper, we propose a CNN-based human activity recognition system using channel state information of WiFi signals, and present results of designing and implementing accelerated hardware structures. The system defined four possible behaviors during studying in indoor environments, and classified the channel state information of WiFi using convolutional neural network (CNN), showing and average accuracy of 91.86%. In addition, for acceleration, we present the results of an accelerated hardware structure design for fully connected layer with the highest computation volume on CNN classifiers. As a result of performance evaluation on FPGA device, it showed 4.28 times faster calculation time than software-based system.

Window Attention Module Based Transformer for Image Classification (윈도우 주의 모듈 기반 트랜스포머를 활용한 이미지 분류 방법)

  • Kim, Sanghoon;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.538-547
    • /
    • 2022
  • Recently introduced image classification methods using Transformers show remarkable performance improvements over conventional neural network-based methods. In order to effectively consider regional features, research has been actively conducted on how to apply transformers by dividing image areas into multiple window areas, but learning of inter-window relationships is still insufficient. In this paper, to overcome this problem, we propose a transformer structure that can reflect the relationship between windows in learning. The proposed method computes the importance of each window region through compression and a fully connected layer based on self-attention operations for each window region. The calculated importance is scaled to each window area as a learned weight of the relationship between the window areas to re-calibrate the feature value. Experimental results show that the proposed method can effectively improve the performance of existing transformer-based methods.

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Design and Evaluation of an Edge-Fog Cloud-based Hierarchical Data Delivery Scheme for IoT Applications (사물인터넷 응용을 위한 에지-포그 클라우드 기반 계층적 데이터 전달 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • The number of capabilities of Internet of Things (IoT) devices will exponentially grow over the next years. These devices may generate a vast amount of time-constrained data. In the context of IoT, data management should act as a layer between the objects and devices generating the data and the applications accessing the data for analysis purposes and services. In addition, most of IoT services will be content-centric rather than host centric to increase the data availability and the efficiency of data delivery. IoT will enable all the communication devices to be interconnected and make the data generated by or associated with devices or objects globally accessible. Also, fog computing keeps data and computation close to end users at the edge of network, and thus provides a new breed of applications and services to end users with low latency, high bandwidth, and geographically distributed. In this paper, we propose Edge-Fog cloud-based Hierarchical Data Delivery ($EFcHD^2$) method that effectively and reliably delivers IoT data to associated with IoT applications with ensuring time sensitivity. The proposed $EFcHD^2$ method stands on basis of fully decentralized hybrid of Edge and Fog compute cloud model, Edge-Fog cloud, and uses information-centric networking and bloom filters. In addition, it stores the replica of IoT data or the pre-processed feature data by edge node in the appropriate locations of Edge-Fog cloud considering the characteristic of IoT data: locality, size, time sensitivity and popularity. Then, the performance of $EFcHD^2$ method is evaluated through an analytical model, and is compared to fog server-based and Content-Centric Networking (CCN)-based data delivery methods.

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.