• 제목/요약/키워드: 완전연결계층

검색결과 33건 처리시간 0.029초

OPAC에서 자동분류 열람을 위한 계층 클러스터링 연구 (Hierarchic Document Clustering in OPAC)

  • 노정순
    • 정보관리학회지
    • /
    • 제21권1호
    • /
    • pp.93-117
    • /
    • 2004
  • 본 연구는 OPAC에서 계층 클러스터링을 응용하여 소장자료를 계층구조로 분류하여 열람하는데 사용될 수 있는 최적의 계층 클러스터링 모형을 찾기 위한 목적으로 수행되었다. 문헌정보학 분야 단행본과 학위논문으로 실험집단을 구축하여 다양한 색인기법(서명단어 자동색인과 통제어 통합색인)과 용어가중치 기법(절대빈도와 이진빈도), 유사도 계수(다이스, 자카드, 피어슨, 코싸인, 제곱 유클리드), 클러스터링 기법(집단간 평균연결, 집단내 평균연결, 완전연결)을 변수로 실험하였다. 연구결과 집단간 평균연결법과 제곱 유클리드 유사도를 제외하고 나머지 유사도 계수와 클러스터링 기법은 비교적 우수한 클러스터를 생성하였으나, 통제어 통합색인을 이진빈도로 가중치를 부여하여 완전연결법과 집단간 평균연결법으로 클러스터링 하였을 때 가장 좋은 클러스터가 생성되었다. 그러나 자카드 유사도 계수를 사용한 집단간 평균연결법이 십진구조와 더 유사하였다.

완전연결계층 기반의 다중 모델을 이용한 화면내 예측 (Intra Prediction Using Multiple Models Based on Fully Connected Layer)

  • 김민재;문기화;박도현;권형진;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.355-356
    • /
    • 2021
  • 딥러닝 기술과 하드웨어의 발전으로 다양한 분야에서 인공신경망과 관련한 연구가 활발히 진행되고 있다. 비디오 코덱 부분에서도 딥러닝 기술을 적용하는 부호화 기술이 많이 연구되고 있다. 본 논문은 최근 완료된 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 확장하여 보다 깊은 계층의 모델로 학습된 새로운 화면내 예측 모델을 제안한다. 기존 VVC 의 MIP 의 성능과 비교하기 위하여 기존 MIP 모델과 제안하는 다중완전연결계층(Fully Connected Layer) 화면내 예측 모델을 HEVC(High Efficiency Video Coding)에 적용하여 그 성능을 비교하였다. 실험결과 제안기법은 VVC MIP 대비 0.08 BD-rate 성능 향상을 보였다.

  • PDF

지식 분류의 자동화를 위한 클러스터링 모형 연구 (Development of a Clustering Model for Automatic Knowledge Classification)

  • 정영미;이재윤
    • 정보관리학회지
    • /
    • 제18권2호
    • /
    • pp.203-230
    • /
    • 2001
  • 본 연구에서는 문헌을 기반으로 한 지식의 자동분류를 위해 최적의 클러스터링 모형을 제시하고자 하였다. 클러스터링 실험을 위해서 신문기사 실험집단과 학술논문 초록 실험집단을 구축하였고, 분류 성능 평가 척도인 WACS를 개발하였다. 분류자질로 사용한 용어의 집합은 다양한 자질 축소 기준을 적용하여 생성하였으며, 다양한 용어 가중치를 사용하였다. 유사계수 공식으로는 코사인 계수와 자카드 계수를 적용하였으며, 클러스터링 알고리즘으로는 비계층적 기법인 완전연결 기법과 계층적 기법인 K-means기법을 각각 사용하였다. 실험 결과 신문기사 원문 집단에서의 성능이 좋았으며, 완전연결 기법의 성능이 K-means 기법보다 높게 나타났다. 역문헌빈도의 적용은 완전연결 클러스터링에서는 긍정적인 효과가 나타났으나, K-means 클러스터링에서는 그렇지 못했다. 분류자질은 전체의 7.66%만 사용하였을 경우에도 성능 저하가 크지 않았으며, K-means 클러스터링에서는 오히려 성능 향상 효과가 있었다.

  • PDF

검색결과의 브라우징을 위한 계층적 클러스터링 (A Hierarchical Clustering for Browsing Retrieval Results)

  • 윤보현;김현기;노대식;강현규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.342-344
    • /
    • 2000
  • 대부분 웹 검색엔진들의 검색결과로 수십 혹은 수백만건의 문서가 제시되어 사용자가 원하는 문서를 찾는데 어려움이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 검색 결과의 브라우징을 위한 검색 결과 문서에 대한 자동 클러스터링 방법을 제안한다. 문서간 유사도를 계산하기 위해 공통 키워드 빈도를 이용하고, 클러스터링 방법은 계층적 클러스터링을 사용하고, 각 클러스터에 대한 디스트립터를 추출하기 위해 빈도를 이용한다. 실험 결과, 완전 연결 방법이 가장 나은 정확도를 보였지만 계산시간이 많이 소요되어 동적 환경에 부적합하다는 것을 보였다. 아울러 집단 평균 연결이 정확도나 계산 시간 측면에서 우수함을 알수 있었다.

  • PDF

OPAC에서 탐색결과의 클러스터링에 관한 연구 (The Effectiveness of Hierarchic Clustering on Query Results in OPAC)

  • 노정순
    • 한국문헌정보학회지
    • /
    • 제38권1호
    • /
    • pp.35-50
    • /
    • 2004
  • 본 연구는 한글 OPAC에서 문헌의 분류와 브라우징에 적합한 정적 계층클러스터링 모형이 서명단어 탐색으로 검색된 탐색결과를 클러스터링하는데도 효과적인지를 규명하기 위해 수행되었다. 서명에 출현하는 단어와 색인자가 부여한 통제어를 통합한 색인어를 이진빈도로 가중치를 주어, 다이스와 자카드 계수, 집단 간 평균연결과 완전연결 클러스터링 기법이 테스트되었다. 16개의 서명단어 탐색으로 검색된 문헌을 클러스터링한 결과 최적으로 선택된 클러스터의 정확률은 유사도 계수나 클러스터링 기법에 관계없이 서명단어탐색보다 100%이상 향상되었다. 1단계와 최종단계 클러스터링 모두에서, 정확률 측면에서는 완전연결이, 재현을 측면에서는 집단 간 평균연결이 더 효과적이었으나 통계적으로 유의한 수준은 아니었다. 1단계 클러스터에서 집단 간 평균연결이 보다 높은 재현율을 보인 것은 유의하였다. 다이스와 자카드 사이에 차이는 없었다. 최종클러스터가 선택되기까지 집단 간 평균연결은 너무 긴 계층군집 단계를 필요로 하여 탐색효율 측면에서 바람직해 보이지 않았다.

다중 모델을 이용한 완전연결 신경망 기반 화면내 예측 (Intra Prediction Using Multiple Models Based on Fully Connected Neural Network)

  • 문기화;박도현;김민재;권형진;김재곤
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.758-765
    • /
    • 2021
  • 최근 딥러닝 기술을 비디오 부호화에 적용하는 다양한 연구가 진행되고 있다. 본 논문은 차세대 비디오 코덱인 VVC(Versatile Video Coding)에 채택된 신경망 기반의 기술인 MIP(Matrix-based Intra Prediction)를 확장한 완전연결계층(Fully Connected Layer) 기반의 다중 모델을 이용하는 화면내 예측 부호화 기법을 제시한다. 또한 다중 화면내 예측 모델을 위한 효율적인 학습기법을 제안한다. HEVC(High Efficiency Video Coding)에서의 성능검증을 위해 VVC의 MIP와 제안하는 완전연결계층 기반 다중 화면내 예측 모델을 HEVC의 참조 소프트웨어인 HM16.19에 추가적인 화면내 예측모드로 구현하였다. 실험결과 제안하는 방법이 HM16.19와 VVC MIP 대비 각각 0.47%과 0.19% BD-rate 성능향상이 있음을 확인하였다.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.37-44
    • /
    • 2021
  • 뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

Mobile SCTP에서 위치관리 시스템과 직접 연동을 통한 이동 단말로의 연결 설정 방법 (Connection Setup Method for Mobile SCTP to a Mobile Node Using Direct Interoperation with Location Management System)

  • 김광렬;김승국;민성기
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권3호
    • /
    • pp.183-191
    • /
    • 2008
  • 본 논문에서는 고정 단말에서 이동 단말로 SCTP 연결 설정을 제공하는 SCTP proxy를 제안한다. 최근에 전송 계층에서 종단 간 방식의 이동성 지원 프로토콜로 SCTP를 확장하여 사용 하는 방안이 제안되었다. 이러한 SCTP에서의 이동성 지원은, SCTP를 전송계층으로 사용하는 모든 응용계층에 대해 핸드오버 기능을 제공한다. 하지만, 현재 SCTP는 독립적인 위치 관리 기능이 없어 고정 단말에서 이동 단말 쪽으로 SCTP 연결 설정은 다른 이동성 지원 프로토콜에 의존하여 이루어진다. 이것을 해결하기 위해, 제안된 SCTP proxy는 일반적인 위치관리 시스템과 연동하여 이동 단말의 주소를 변환하고, 연결설정 메시지를 이동 단말로 전달한다. 이러한 SCTP proxy를 통해 SCTP는 이미 설정된 연결에 대한 핸드오버뿐 아니라, 다른 이동성 지원 프로토콜의 도움 없이 이동 단말로 새로운 연결 설정도 가능하여 완전한 이동성 지원이 가능하게 된다.

계층적 문서 클러스터링을 위한 응집식 기법과 분할식 기법의 비교 연구 (A Comparative Study on the Agglomerative and Divisive Methods for Hierarchical Document Clustering)

  • 이재윤;정진아
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2005년도 제12회 학술대회 논문집
    • /
    • pp.65-70
    • /
    • 2005
  • 계층적 문서 클러스터링에 있어서 실험집단에 따라 응집식 기법과 분할식 기법의 성능이 다르며, 이를 좌우하는 요소는 분류의 깊이, 즉 분류수준이라고 가정하였다. 조금만 나누면 되는 대분류인 경우는 상대적으로 분할식 기법이 유리하고, 조금만 합치면 되는 소분류인 경우에는 응집식 기법이 유리할 것이라고 판단했기 때문이다. 그에 따라 분할식 클러스터링 기법인 양분(Bisecting) K-means기법과 응집식 기법인 완전연결, 평균연결, WARD기법의 성능을 실험집단이 대분류인 경우와 소분류인 경우의 유사계수를 적용하여 각 기법별 성능을 비교하여 실험집단의 특성에 따른 적합 클러스터링 기법을 찾고자 하였다. 실험결과 응집식 기법과 분할식 기법의 성능 우열에 영향을 미치는 것은 분류수준보다는 변이계수로 측정된 상대적인 군집의 크기 편차인 것으로 나타났다.

  • PDF