• 제목/요약/키워드: 와형성영역

검색결과 5건 처리시간 0.018초

표면압력이 상호 간섭되는 슬릿을 가진 원주의 후류 유동 특성 (The Flow Characteristics around Circular Cylinder of Pressure Interference with Slits)

  • 부정숙;김진석;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.736-744
    • /
    • 2003
  • This study is conducted to investigate aerodynamic forces and wake structures about the pressure interference of a circular cylinder with slits. An experimental investigation of a circular cylinder with slits is carried out in uniform flow in the range of Reynolds number from 8,000 to 32,000 using X-type hot wire. Flow visualization is executed by smoke-wire method to understand the mechanism of these vortex formation process. Inspection in the wake at X/D=5.5 of the cylinder with the slits suggested that a strong vortex-shedding pattern for these cylinders is revealed compare with a circular cylinder without slits. It is found that the rolling up position of shear layer of the cylinder with slits is shorten compare with a circular cylinder without slits.

Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구 (An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins)

  • 부정숙;김경천;류병남
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF

톱니형 휜이 부착된 원주의 근접후류특성 연구 (IV) - 와형성영역의 유동비교 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated fins (IV) - Comparison of Vortex Formation Regions -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.357-366
    • /
    • 2003
  • An experimental study is performed to investigate characteristics of near of wakes of circular cylinders with serrated fins using a hot-wire anemometer for various freestream velocities. The main focus of this paper is to investigate a reason why a vortex formation length is increased suddenly. Velocity of the fluid which flow through fins decreases as fin's height and freestream velocity increases and fin pitch decreases, and a thickness of boundary layer increases. The finned tube has a lower velocity gradient when the higher boundary layer grows. This velocity gradient on finned tube makes a weak shear force in the wake and moves to downstream in a state of lower momentum transfer between the freestream and the wake. The phenomenon makes a vortex formation length increased suddenly. The fluctuations of the velocity distributions on the finned tube and (equation omitted) = 1.0 contour line in the vortex formation region decreases when the fin height increases and the pitch decreases.

톱니형 휜이 부착된 원주의 근접후류특성 연구 (I) - 와유출 메카니즘의 특성변화 규명 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (I) - Mechanism of Vortex Shedding -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1183-1190
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo et al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference iss occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

주기적으로 회전진동하는 원주 후류의 공진특성 (Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF