• Title/Summary/Keyword: 와이어방전연삭

Search Result 9, Processing Time 0.024 seconds

Experimental Study on the WEDG Characteristics of WC-Co -Relationship between Surface Integrity and Dielectric Conditions- (WEDG법에 의한 WC-Co의 가공특성의 실험적 연구 -가공액환경에 따른 표면특성-)

  • 정태현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.246-251
    • /
    • 2000
  • In this paper, Wire electric discharge grinding(WEDG) method for manufacturing the micro shaft was introduced and the machining characteristics was investigated. from the experimental results, it was concluded that high surface integrity could be obtained by use of dielectric fluid spraying method and small capacitive condenser.

  • PDF

A Study for the Improvement of the Life Cycle of Press Die using Wire Cut Discharge Machining (와이어 컷 방전가공 시 프레스금형 수명 향상에 대한 고찰)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.61-67
    • /
    • 2017
  • Research into the selection of suitable materials and the development of fast processing methods for press die manufacturing is absolutely necessary to reduce the production time and cost. In particular, knowledge of its heat properties must be considered whendeveloping a long press die. Generally, as the main component materials of press dies, Cr, W low alloy tool steel, high carbon-high chrome steel, high speed steel, etc., are used as thetooling steel for the cold die. Machine tools and wire-cut electric discharge machining are mainly used for processing the press die parts. There are many differences in the machining time and life cycle of die parts depending on the machining process. The parts produced by milling and grinding have a high manufacturing time and cost with a long life cycle, while thosemade by milling and wire-cut discharge machining have areduced manufacturing time and cost,whereastheir die life cycle is reduced. Therefore, in this study, we will discuss amethod of improving the life cycle of the die parts by using heat treatment as a processing method that reduces the manufacturing time and cost. SEM, EDS analysis and the surface roughness analysis of the surface and center of the workpiece are used for analyzing the specimens produced by three machining methods, viz. milling - grinding, milling - wire cut discharge, and milling - wire cut discharge - heat treatment. A method of making die parts having the same life cycle as those produced by milling - grinding is developed with the milling - wire cut discharge - high temperature tempering method.

Mechanical Characteristics when Wire Electrical Discharge Machining and Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 연삭가공시 기계적 특성)

  • 김종업;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.172-178
    • /
    • 2001
  • Titanium alloys have lightness, high strength and good corrosion resistant characteristics, and broadly used in manufacturing parts for military and aerospace industries. And these alloys also are recognized for organism materials comparatively and used as fixing ones in the human body. Nevertheless thess alloys have excellent properties such as corrosion resistance, heat resistance, and good tensile strength, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by tools. Therefore, it is required nontraditional machining process. And the mechanical characteristics such as surface structure and shape, hardness and bending strength are studied for wire electrical discharge machined and surface ground titanium alloys for various heat-treated conditions.

  • PDF

The Characteristics of Wire Electrical Discharge Machining and Final Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 후처리 연삭가공 특성)

  • 왕덕현;김원일;김종업
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.10-16
    • /
    • 2002
  • Titanium alloys have the characteristics of lightness, high strength and good corrosion resistant and are broadly used in manufacturing parts for military and aerospace industries. These alloys are also recognized for organism materials comparatively and used as fixing ones in human body. Nevertheless titanium alloys have excellent properties, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by conventional tools, so it is required nontraditional machining process. Finally, the mechanical characteristics such as surface roughness, shape and hardness on studied for wire electrical discharge machined and pound surfaces of titanium alloys for different heat-tested conditions.

A Study on the Micro Hole Machining Characteristics in WEDG method (방전 미세구멍가공 특성의 고찰)

  • 정태현;박규율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.953-956
    • /
    • 1997
  • Micro drilling characteristics by EDM method was investigated. In detail, Micro tool electrode for EDM drilling was machined by use of WEDG method and micro hole was drilled using the machined tool electrode in SUS plate. The machining accuracy and time was compared in a different dielectric fluid. As a result, it was convinced that this method could be utilized as a fabrication technology of micro mold or micro 3 dimensional parts.

  • PDF

Tool Electrode Wear Compensation using Round Trip Method for Machining Cavities in Micro EDM Process (마이크로 방전가공에서 Round Trip Method를 이용한 전극마모 보정)

  • Park Sung-Jun;Kim Young-Tae;Min Byung-Kwon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.42-49
    • /
    • 2004
  • Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal process. The recent trend in reducing the size of product has given micro EDM a significant amount of research attention. Micro EDM is capable of machining not only micro holes and micro shafts as small as a few micrometers in diameter but also complex three dimensional micro cavities. But, longitudinal tool wear by electrical discharge is indispensable and this affects the machining accuracy in micro EDM process. Therefore, newly developed tool wear compensation strategy called round trip method is suggested and verified by experiment. In this method, machining depth of cut, overlap effect and critical travel length are also considered.

Machining of Micro-scale Shapes using Micro-EDM Process (Micro-EDM 공정을 이용한 미세 형상 가공)

  • 김영태;박성준;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.

Fabrication of Micro Tool Electrode for Machining Micro Structures using Wire Electrical Discharge Grinding(WEDG) (WEDG 방법을 이용한 마이크로 구조물 가공용 미세공구 제작)

  • Park Sung-Jun;Ahn Hyun-Min;Lee Kyo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.13-20
    • /
    • 2005
  • Micro EDM process is generally used for machining microholes, cavities, and three dimensional shapes. For machining micro structures, first of all, micro tool electrode is indispensable and WEDG system is proposed for tool fabrication method. When using WEDG, its machining characteristics are highly affected by many EDM parameters such as applied voltage, current, rotation speed, capacitance, and pulse duration. Therefore, the design of experiment is introduced to fully understand the effect of the EDM parameters on machining tool electrode. And an attempt has been made to develop the mathematical model for predicting the size of the tool electrode by calculating spark distance. The suggested model was verified with experiment and predicted working gap distance is in good accord with the measured value.

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.