• Title/Summary/Keyword: 와류 유발진동

Search Result 18, Processing Time 0.031 seconds

Analysis of Vortex Vibration by Using the FSI Technique (FSI 기법을 이용한 와류진동 해석)

  • Kim, Dae-Geun;Kim, Sung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.754-758
    • /
    • 2010
  • 케이블 교량에서 발생하는 사장케이블의 진동현상에 대한 현상학적 특성을 명확히 이해해야, 사장케이블의 적합한 제진설계가 가능하다. 본 연구에서는 유체의 흐름과 구조물의 진동을 동적으로 연계하여 해석하기 위하여, ADINA의 CFD 및 Structure 코드를 동적으로 연계하는 FSI(Fluid Flow with Structure Interaction) 기법을 이용하였다. 바람으로 인해 이중원형실린더의 풍상측과 풍하측 실린더에서는 와류가 방출되면서 외력이 작용하게 되며, 이러한 공기력은 풍하측 실린더의 고유진동 운동과 함께 와류진동현상을 유발한다. 본 연구에서는 풍하측 실린더의 와류진동 현상의 해석에 주안점을 두었다. 본 연구에서는 흐름의 레이놀즈수와 이중원형실린더에 대한 바람의 입사각을 변화시키며 풍하측 실린더에서 발생하는 와류진동의 크기를 분석하였다. 본 연구결과, 유입풍속 및 바람의 입사각에 따라 이중원형실린더에서 발생하는 일반적인 와류방출현상과 풍하측 실린더에 작용하는 공기력 및 변위양상을 예측할 수 있었다. 특히, 바람의 입사각이 $15^{\circ}$인 경우에는 풍하측 실린더에서 방출되는 와류로 인해 풍하측 실린더에는 비대칭의 공기력이 작용하며, 이는 풍하측 실린더가 2사분면에서 4사분면 방향으로 진동하는 원인이 되는 것으로 판단된다.

  • PDF

A Study on Vortex-Induced Vibration Characteristics of Hydrofoils considering High-order Modes (고차모드를 고려한 수중날개 와류기인 진동특성 연구)

  • Choi, Hyun-Gyu;Hong, Suk-Yoon;Song, Jee-Hun;Jang, Won-Seok;Choi, Woen-Sug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.377-384
    • /
    • 2022
  • Vortex-induced vibration (VIV) occurs owing to the vortex generated from the back side of the appendages of ships and submarines during operation. Recently, the importance of high-order modes (HOMs) vibration and fatigue failure has become increasingly emphasized by increasing the speed of ships and the size of structures. In addition, predicting the vibration of HOMs is significantly necessary as the VIV becomes stronger in the fast flow speed condition than in the low flow speed condition. This study introduces a methodology according to HOMs hybrid Fluid Structure Interaction (FSI) for predicting the HOMs VIV on the hydrofoils. The HOMs FSI system is verified by comparing the VIV results from the FSI simulation with the experimental results. Finally, the effectiveness of the HOMs FSI is determined by applying the maximum von-Mises stress obtained from the VIV on the hydrofoil to the S-N curve released from Det Norske Veritas (DNV). VIV results from the HOMs FSI include the lock-in characteristics as well as a significant increase of more than 10 times compared with that of low-order modes (LOMs) FSI. In the future works, advanced studies will be required for improving cantilever boundary conditions and the shape of hydrofoils.

Numerical analysis of the vortex induced vibration of the 2-D cylinder using dynamic deforming mesh (동적격자변형기법을 이용한 2차원 실린더의 와류유발진동에 대한 수치해석)

  • Lee, Namhun;Baek, Jiyoung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, numerical simulations are performed on the lock-in phenomena of vortex induced vibration(VIV) of a two dimensional cylinder. A deforming grid as well as a rigidly moving grid are used to simulate the movement of the cylinder. The grid deformation is accomplished by the linear spring analogy. Converged solutions, which are obtained by controling the grid size and the non-dimensional time step, are used for comparison and validation of the analysis results. Moreover, the efficiency and the accuracy of the coupling methods for fluid-structure interaction are examined.

PPF/Adaptive PPF Control of Vortex-induced Vibration of Composite Beam with Rigid Cylinder (PPF/Adaptive PPF 제어기를 이용한 실린더를 부착한 복합재 보의 와류 유발 진동 제어)

  • Chang, Young-Hwan;Kim, Do-Hyung;Yang, Seung-Man;Park, Ki-Yeon;Rew, Keun-Ho;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.147-150
    • /
    • 2002
  • For lightweight and flexible structures, it is important to suppress the vibrations induced by interactions between fluid and structures. This paper presents the PPF/Adaptive control of the vortex-induced vibration of composite beam with rigid cylinder in which the fluid force is considered as an external excitation on the structure. For the problems considered here, the excitation frequency (vortex-shedding frequency) is assumed to be equal to the natural frequency of the structure. A pair of piezoceramic devices attached bottom of the composite structure was used as actuators. Simulation and experiment were carried out with the designed controller and effectiveness of the PPF/Adaptive PPF control was verified by both experimental and simulation results.

  • PDF

Reduction of Flow-Induced Vibration in the Heat Exchanger (열교환기에서의 유동유발 진동 저감)

  • 장한기;김승한;이재현;양정렬
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1200-1209
    • /
    • 1999
  • This paper reports a peculiar example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration was dtected at all around the plant. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34 Hz. To identify the vibration, frequency analysis on the response vibration as well as on the expected excitation forces and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.

A Study on the Flow Characteristics in Tube Banks due to the Upstream Periodic Velocity Fluctuation (전열 관군에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.446-451
    • /
    • 2020
  • Flow induced vibration in a heat exchanger may cause damage to piping. The purpose of this study was to compare the characteristics of vortex shedding behavior through the circular tube banks at several tube locations, No.1, No. 10, and No. 19, with respect to time when the flow velocity of the inlet is constantly and periodically fluctuating.(60) The time characteristics of lift and the PSD characteristics were also investigated. In the case of periodic inlet flow velocity, strong vortex occurred at some time and after that time, a weak vortex was generated through the tube banks simultaneously. In the case of constant inlet flow velocity, the lift fluctuating frequency was 37.25Hz and that at the No. 19 tube was 18.63Hz and near 50Hz. In the case of periodic inlet flow velocity, the lift fluctuating frequency was 37.25Hz and 18.63Hz. The lift fluctuating frequency at No. 19 tube was observed broadly from 20Hz and 50Hz.

A study on the flow induced vibration on a heat exchanger circular cylinder (열교환 단일 원관의 유동 유발 진동 특성에 관한 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single circular cylinder was established from the present CFD study.

Evaluation of Structural Integrity for HANARO Capsule Structure by Vibration Test and Analysis (진동시험 및 해석을 통한 하나로 캡슐 구조물의 구조건전성 평가)

  • 이영신;강연환;최명환;신도섭
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.261-268
    • /
    • 2000
  • The instrumented capsule is subjected to flow-induced vibration(FIV) due to the flow of the primary coolant and then the structural integrity of the capsule during irradiation in the HANARO reactor is an issue of major concern. For this purpose the acceleration was measured by four accelerometers attached to the protection tube of the capsule mainbody and the displacement of test holes was calcultated using commercial finite element program ANSYS to evaluate the structural interference with the neighboring flow tubes under the reactor operating condition. The calculated displacements of test holes in the reactor in-core were found to be lower than the values of allowable design criteria.

  • PDF