• Title/Summary/Keyword: 와류형 분사기

Search Result 55, Processing Time 0.019 seconds

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Study on Combustion Stability of Sub-scale Gas Generator (축소형 가스발생기 연소안정성 연구)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.594-596
    • /
    • 2010
  • Hot-firing tests were performed on a sub-scale gas generator for development of a 75 ton-class liquid rocket engine. This paper deals with the analysis results of low-frequency combustion instability that encountered during combustion tests of the gas generator.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine (7톤급 액체로켓엔진 연소기 개념설계)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.454-456
    • /
    • 2012
  • Conceptual design results of a thrust chamber for a 7 tonf-class liquid rocket engine of KSLV-II 3rd stage were described. The engine system for KSLV-II 3rd stage is pump-fed system, the thrust chamber has vacuum thrust of 6.9 tonf, vacuum specific impulse of 336.9 sec, chamber pressure of 70 bar, nozzle expansion ratio of 94.5, total propellant mass flow rate of 20.5 kg/s, mixture ratio(O/F) of 2.45. The thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene.

  • PDF

The steady and unsteady state computations on the flame structure for a Kerosene coaxial swirl injector (케로신 동축 와류형 분사기의 정상 및 비정상 상태 화염구조 해석)

  • Han, Sang-Hoon;Kim, Seong-Ku;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.31-34
    • /
    • 2012
  • Numerical simulations of the steady and unsteady state were conducted for a coaxial swirl injector with Kerosene fuel. Non-premixed equilibrium model based on chemical equilibrium assumption was used as turbulence-chemistry interaction model. As an equations of state, SRK(Soave-Redlich-Kwong) EOS was applied to deal with the behavior of real fluid in a high pressure condition. Through the steady and unsteady computations, mean values of steady and time-averaged unsteady state were compared on the temperature and OH mass fraction and it was shown that the flame structure of steady state was different to that of time-averaged unsteady state.

  • PDF

Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers (고압 축소형 재생냉각형 연소기 개발)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-16
    • /
    • 2009
  • The development of high-pressure sub-scale combustion chambers is described. A total of four high-pressure sub-scale combustion chambers having either a detachable structure of the mixing head and the chamber or a single welded regenerative cooling structure have been developed. The sub-scale combustion chambers have a chamber pressure of 70 bar and propellant mass flow rate of 5.1~9.1 kg/s. The propellant mass flow rate and the recess number of the injector were changed for the improvement of combustion performance and they were validated through hot firing tests. The design and manufacturing techniques of regenerative cooling channel and film cooling to be applied to the full-scale combustion chamber were adopted through the present development and verified.

Study on Combustion Stability and Flame Structure of Injectors Through Subscale Combustion Tests (모델 연소시험을 통한 분사기 연소안정성과 화염구조에 대한 연구)

  • Song Ju-Young;Lee Kwang-Jin;Seo Seonghyeon;Han Yeoung-Min;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.245-250
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess number have been tested for the comparative study of stability characteristic and flame structure. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a fullscale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

Effect of Gas Density on Self-Pulsation in Liquid-Gas Swirl Coaxial Injector (액체-기체 와류동축형 분사기의 자기-맥동에 대한 기체 밀도의 영향)

  • Ahn, Jonghyeon;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.134-143
    • /
    • 2022
  • When a recess is applied to a swirl coaxial injector that uses liquid and gas propellants, a self-pulsation phenomenon in which the spray oscillates at regular intervals may occur. The phenomenon is caused by the interaction between the liquid and gas propellants inside the injector recess region. The propellants' kinetic energies are expected to affect significantly the spray oscillation. Therefore, cold-flow tests using helium as a gas-simulating propellant were conducted and compared with the results of the previous study using air. Dynamic pressure was measured in the injector manifold and frequency characteristics were investigated through the fast Fourier transform analysis. In the experimental environment, the helium density was about seven times lower than the air density. Accordingly, the intensity of pressure fluctuations was confirmed to be greater when air was used. At the same kinetic energy condition, the perturbation frequency was almost identical in the low flow rate conditions. However, as the flow rate increased, the self-pulsation frequency was higher when helium was used.

Spray characteristics of liquid-swirl/gas-jet coaxial injectors (액체스월-기체제트 동축 분사기의 분무특성)

  • Jeon, Jae-Hyoung;Hong, Moon-Guen;Kim, Jong-Gyou;Han, Yeoung-Min;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.82-85
    • /
    • 2009
  • In the development of Liquid Rocket Engine(LRE) systems, it is essential to understand the spray characteristics which influence mainly the performance and the stability of combustion. The injectors for this study have a recessed Liquid-swirl/Gas-centered jet coaxial type. For the similarity with actual conditions, the experimental conditions are calculated by using the momentum ratio as a matching parameter, and the stimulants of fuel and oxidizer are gaseous nitrogen and water respectively. The spray fields were measured by means of a photographic technique. Moreover, an effect of the momentum ratio has been investigated.

  • PDF

An Experimental Study of the Rocket Preburner Injector (로켓 산화제 과잉 예연소기 분사기의 성능특성 연구)

  • Choi, Seong-Man;Yang, Joon-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • The oxidizer-rich preburner is applied to the high efficiency closed cycle rocket propulsion system. This system is generally operated on oxidizer-fuel mixture ratio over than 50. The spray quality and mixing performance are very important for stable combustion of this preburner. This paper presents basic design concept and spray characteristic of the oxidizer-rich preburner injector and this result could be applied to the development of the oxidizer rich preburner system.