• 제목/요약/키워드: 와류실 디젤기관

검색결과 4건 처리시간 0.017초

와류실식 소형 디젤기관의 연소실 형상이 기관 성능에 미치는 영향(II) (The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine(II))

  • 라진홍
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.47-55
    • /
    • 1999
  • A study on swirl chamber for diesel engine is to realize lower fuel consumption and exhaust emission than the current marketing engines. Author formerly reported the performance characteristics of small IDI diesel engine with swirl chamber by changing the jet passage area and its angle, and the depth and shape of the piston top cavity. Following after the first report, in this paper, the characteristics of fuel consumption, soot emission, and exhaust gas temperature were examined and analyzed after dimension of jet passage area expanded to $70.1mm^2$ The results were that the optimum values of the jet passage area depending on the depth of the piston top cavity were different at each engine speeds and loads, and in accordance with application of engine running conditions they were able to be selected as optimum dimensions of each design parameters.

  • PDF

와류실식 소형 디젤 기관의 연소실 형상이 기관 성능에 미치는 영향(I) (The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine (I))

  • 라진홍;안수길
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.27-34
    • /
    • 1998
  • The purpose of this study is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area and its angle, the depth and shape of the piston top cavity(main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load, by the depth of the piston top cavity at the low speed and load. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions.

  • PDF

초음파 연료공급장치용 디젤자동차의 성능 향상에 관한 연구(III) (과급 디젤기관에 대하여) (A Study on the Performance of Diesel Automobile Engine with Ultrasonic Fule Supply System(III) (On the case of Turbo-charging Diesel Engine))

  • 최두석;이흥영;류정인
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.12-18
    • /
    • 1995
  • To improve the performance of diesel automobile engine, we designed new fuel supply system named ultrasonic fuel supply system. The performance test of diesel automobile engine carried out to examine possibility of practical use of ultrasonic fuel supply system to test engine. This paper deals with the comparative results of performance test of diesel automobile engine in terms of smoke, HC, SFC, PS, thermal, efficiency, torque. Following are obtained result. 1) In naturally aspirated diesel engine, when we use ultrasonic fuel supply system output, fuel consumptions are improved and exhaust gas reduced significantly. 2) In turbo-charging diesel engine both using of ultrasonic fuel supply system and using of conventional injector, engine performance and exhaust gas temperature are almost constant. 3) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, NOx are emitted approximately 3.5% higher than total average. 4) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, smoke and CO are 17% and 11.8% improved respectively.

  • PDF

와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선 (Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine)

  • 이창규;허윤근;서신원
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.