• Title/Summary/Keyword: 와류실식 디젤기관

Search Result 6, Processing Time 0.019 seconds

The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine (I) (와류실식 소형 디젤 기관의 연소실 형상이 기관 성능에 미치는 영향(I))

  • Ra, J.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 1998
  • The purpose of this study is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area and its angle, the depth and shape of the piston top cavity(main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load, by the depth of the piston top cavity at the low speed and load. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions.

  • PDF

The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine(II) (와류실식 소형 디젤기관의 연소실 형상이 기관 성능에 미치는 영향(II))

  • Ra, Jin-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.47-55
    • /
    • 1999
  • A study on swirl chamber for diesel engine is to realize lower fuel consumption and exhaust emission than the current marketing engines. Author formerly reported the performance characteristics of small IDI diesel engine with swirl chamber by changing the jet passage area and its angle, and the depth and shape of the piston top cavity. Following after the first report, in this paper, the characteristics of fuel consumption, soot emission, and exhaust gas temperature were examined and analyzed after dimension of jet passage area expanded to $70.1mm^2$ The results were that the optimum values of the jet passage area depending on the depth of the piston top cavity were different at each engine speeds and loads, and in accordance with application of engine running conditions they were able to be selected as optimum dimensions of each design parameters.

  • PDF

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

Study on exhaust emission at the swirl chamber in small diesel engine (와류실식 소형디젤기관의 배기 성능에 관한 연구)

  • Myung, Byung-Soo;Lim, Jung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • The purpose of this research is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area, the depth and shape of the piston top cavity (main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. And another purpose of this research is to make a new diesel engine that is satisfied fuel consumption and regulation value of exhaust gas. 1. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load than low speed and low load. The influence of jet passage large area was proven to decrease the rate of fuel consumption. 2. Smoke was affected significantly by the depth of the piston top cavity, but exhaust temperature and the rate of fuel consumption wasn't affected. The rate of fuel consumption was affected by changing injection timing. 3. The rate of fuel consumption, exhaust temperature and Smoke were affected significantly by the shape of the piston top cavity from rectangular to trapezoid. That is we have all high value. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions. 4. We made a new diesel engine that is satisfied design target values(sfc=190 g/hr, NOx + THC=6.0 g/KWh, PM=0.3 KWh), the rate of fuel consumption and emission standard etc., through changing injection timing at the maximum torque point and rated power point. Although we have a little high NOx value.

  • PDF