• Title/Summary/Keyword: 와류수차

Search Result 7, Processing Time 0.022 seconds

Effect Analysis of Pulley on Performance of Micro Hydropower in Free Surface Vortex (자유수면 와류에서 마이크로 소수력의 성능에 풀리가 미치는 영향 분석)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.234-241
    • /
    • 2021
  • This paper contributes to the understanding of the effect of pulley on the performance of the vortex turbine in free water surface. The experimental work was to analyze the rotation, voltage and current of the turbine due to physical factors (vortex height, velocity, effective head, etc.) at flow rates ranging from 0.0069 to 0.0077 m3/s in the inlet channel. As a result, the experimental values showed that voltage, current and rotational speed of the vortex turbine decreased with increasing the pulley ratio regardless of the blade type. The efficiency of straight blade and twisted blade was 52 % at the gear ratio of 0.45, whereas the efficiency of small twisted blade was 54 % at the pulley ratio of 0.21. The highest amount of the energy generated by the water free vortex turbine occurred within a pulley ratio of 0.5. The efficiency of this vortex turbine was observed at 0.2 ~ 58 % depending on the pulley ratio.

Effect of Blade Number Variations on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 블레이드 수 변화가 마이크로 중력식 와류 수차 성능에 미치는 영향)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • The aim of this paper is to understand the blade number effect on vortex turbine performance in the cylindrical vortex chamber below the free water surface. Using the same blade profile, the performance of gravitational vortex turbine is tested each with 2, 3, 4, 5 and 6 blades installed at the relative vortex height (y/hv) ranging from 0.065 to 0.417. The obtained results indicate that the rotation, voltage, current and power increase in the relative vortex height of 0.065 and 0.111 when increasing the number of blades at flow velocity of less than 0.7 m/s. The average power of the 5-blade turbine is more than others. The performance of the 4-blade turbine with a 130 mm diameter installed near the orifice is higher than that of the same number of blades with a 220 mm diameter in the vortex chamber.

Effect Analysis of Relative Position of Blade on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 마이크로 중력식 와류 수차 성능에 블레이드의 상대위치 변화가 미치는 영향 분석)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.196-203
    • /
    • 2022
  • This paper contributed to the understanding of the effect of the blade relative position on performance of micro gravitational vortex turbine in free water surface. In a constant vortex flow, the rotation, voltage and current of micro vortex water turbine were measured according to the position change of the blade installed at the relative vortex height (y/hv) ranging from 0 to 0.778 below the free water surface. The flow rate ranged from 0.0063 to 0.00662 m3/s. The results of the experiments showed that relative positions of the blade affected the performance of vortex water turbine because the distributions of incoming flow velocity and turbulence intensity were changed. The highest amount of the energy generated by the vortex water turbine occurred in the relative vortex height ranging from 0.111 to 0.222. The output power at the relative vortex height of 0.111 was about 2.4 times larger than the relative vortex height of 0.588 below the free water surface.

Experimental Study on the Performance of a Two-Stage Vortex Turbine with a Free Water Surface (자유수면을 갖는 2단 와류 수차의 성능에 관한 실험적 연구)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.236-244
    • /
    • 2024
  • This research was conducted to determine the performance of a two-stage vortex turbine with a free water surface. The performance of the two-stage runner was studied by varying the flow rate and the position of the runner in the cylindrical vortex chamber. The experimental results showed that the performance parameters such as torque, voltage, current, and rotational speed increased with increasing flow rate. The runner depth ratio has a significant impact on the performance of the two-stage vortex turbine. The highest power generated by the two-stage runner occurred in the range of 0.054 to 0.162 runner depth ratio near the orifice. The power output of the two-stage runner was higher than that of the single runner due to more vortex and blade contact area in the flow range of 7.2 to 7.7 L/s.

Hydraulic experiment on floating breakwater mounted wave-power generation (파력발전형 유공 부유식방파제의 발전효율 검토)

  • Yoon, Jae-Seon;Ha, Taemin;Yeh, Dongwan;Lee, Byeong Wook;Song, Hyun-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.214-214
    • /
    • 2021
  • 본 연구에서는 부유식방파제의 입사면과 전달면이 Slit으로 구성되어있어 유수실이 존재하는 투수성 부유식방파제에 대하여 2차원 자유도운동에 따른 발전가능성을 검토하였다. 입사파랑이 부유식방파제 유수실구간의 내부로 유입될 때 발생하는 강한 와류는 입사파랑의 주기와 파고가 증가할수록 궤적이 높고 길게 발생하게 된다. 이러한 원리를 이용하여 부유식방파제 유수실구간 입사면과 전달면에 각각 양방향으로 회전이 가능한 수차를 설치하고 와류 발생에 따른 2차 에너지 생성 가능성을 검토하였다. 실험결과, 입사파랑의 내습에 따라 수차는 시계방향과 반시계방향으로 회전하는 것을 확인할 수 있었으며, 상대적으로 주기가 긴 규칙파랑 실험조건(파고 0.1m, 주기 2.0sec)에서 약 0.5W 내외의 지속적인 전기에너지를 확보하는 것으로 검토되었다.

  • PDF

A Research for Reducing Methods of Sub-synchronous Vibration in Water Turbines (수차에서 발생되는 유체여기진동 저감방안 연구)

  • Park, Han-Yung;Cho, Sung-Su;Ra, Beyong-Pil;Kim, Jin-Hun;Park, Jong-Ho;Lee, Yeon-Ju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.13-18
    • /
    • 2009
  • In this paper, it is intended to figure out the features and causes of the processes of creation, growth and disappearance of spiral-vortex-flow generated in Francis turbines generally. The spiral-vortex-flow generated in draft tubes of the Francis turbines is estimated to have negative effects on power plant structure and to the people inside the building as well as to lead to a low-frequency-vibration driven by sub-synchronous whirl vibration. Therefore, we intend to investigate how much the low-frequency-vibration has an influence upon the powerhouse structure and practice analyzing the effectiveness on the previously-introduced methods to reduce side-effects of sub-synchronous whirl vibration and finally we intend to show the optimal solutions through this paper.

Modeling Paddlewheel-Driven Circulation in a Culture Pond (축제식 양식장에서 수차에 의한 순환 모델링)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.643-651
    • /
    • 2001
  • Paddlewheel-driven circulation in a culture pond has been simulated based on the depth integrated 2 dimensional hydrodynamic model. Acceleration by paddlewheel is expressed as shaft force divided by water mass discharged by paddlewheel blades. The model has been calibrated and applied to culture ponds as following steps:- i) The model predicted velocities at every 10 m along longitudinal direction from the paddlewheel. The model was calibrated comparing the results with the measured values at mass correction factor $\alpha$ and dimensionless eddy viscosity constant $\gamma$, respectively, in a range $15\~20$ and 6. ii) Wind shear stress was simulated under conditions of direction $0^{\circ}C,\;90^{\circ}C\;and\;180^{\circ}C$ and speed 0.0, 2.5, 5.0 and 7.5 m/s. Change rate of current speed was <$1\%$ at wind in parallel or opposite direction to the paddlewheel-driven jet flow, while $4\%$ at orthogonal angle. iii) The model was then applied to 2 culture ponds located at the Western coast of Korea. The measured and predicted currents for the ponds were compared using the regression analysis. Analysis of flow direction and speed showed correlation coefficients 0.8928 and 0.6782 in pond A, 0.8539 and 0.7071 in pond B, respectively. Hence, the model is concluded to accurately predict circulation driven by paddlewheel such that it can be a useful tool to provide pond management strategy relating to paddlewheel operation and water quality.

  • PDF