• Title/Summary/Keyword: 온천천 유역

Search Result 29, Processing Time 0.028 seconds

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea (셀룰러 오토마타 기반 WCA2D 모형을 이용한 부산 온천천 유역 고해상도 도시 침수 해석)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • As climate change increasesthe frequency and risk of flooding in major cities around theworld, the importance ofsimulation technology that can quickly and accurately analyze high-resolution 2D flooding information in large-scale areasis emerging. The physically-based approaches based on the Shallow Water Equations (SWE) often requires huge computer resources hindering high-resolution flood prediction. This study investigated the theoretical background of Weighted Cellular Automata 2D (WCA2D), which simulates spatio-temporal changes offlooding using transition rules and weight-based system, and assessed feasibility to simulate pluvial flooding in the urbancatchment, theOncheon-cheon catchmentinBusan, SouthKorea.Inaddition,the computation performancewas compared by applying versions using OpenComputing Language (OpenCL) andOpenMulti-Processing (OpenMP) parallel computing techniques. Simulationresultsshowed that the maximuminundation depthmap by theWCA2Dmodel cansimilarly reproduce historical inundation maps. Also, it can precisely simulate spatio-temporal changes of flooding extent in the urban catchment with complex topographic characteristics. For computation efficiency, parallel computing schemes, theOpenCLandOpenMP, improved the computation by about 8~14 and 5~6 folds respectively, compared to the sequential computation.

Acute Toxicity of Oncheon Stream Water to the Sea Urchin, Hemicentrotus pulcherrimus (말똥성게에 대한 온천천수의 급성독성)

  • LEE Suk-MO;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.414-422
    • /
    • 1984
  • This research was conducted to evaluate the effect of polluted Oncheon Stream on the marine organisms in the Suyeong Bay. Water quality and 96 hr acute toxicity to the sea urchin, Hemicentrotns pulcherrimus by recirculation bioassay were examined from Feb. 20 to Apr. 15, 1984. The 96 hr $50\%$ effective concentration($EC_{50}$) on the attachment of the podia of the sea urchin was observed to occur at test concentrations between 40.0 and $51.0\%$ (v/v), and safe concentrations may be assumed to be within 4.0 and $5.1\%$. These values indicate as follows : 1. Oncheon Stream was extremely polluted by oxygen-demanding wastes and synthetic organic compounds from sewage and industrial waste water. 2. Linear alkylbenzene sulfonate(LAS) which has not been yet included in water quality standard was discharged above the TLm. 3. Unknown toxicity may be synergy among complex substances. In consideration of the relationship between COD values of Oncheon Stream and dilution water, the effect of toxicity of Oncheon Stream water reached to the area of the Suyeong Bay where the COD value was found to be 12.2 ppm.

  • PDF

A study of the operational plans of non-point treatment facility depending on non-point source reduction scenario (비점오염원 저감시나리오에 따른 비점처리시설의 운영방안 연구)

  • Shin, Hyun-Suk;Jang, Jong-Kyung;Shon, Tae-Seok;Kim, Hong-Tae;Son, Jeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2056-2060
    • /
    • 2008
  • 도시하천의 오염원은 점오염원과 비점오염원으로 분류되어 점오염원은 하천유입 전에 차집하여 하수처리장에서 처리하는 체계가 갖추어져 있으나 전체 오염부하량의 $30%{\sim}40%$ (BOD기준)로 추정되는 비점오염원은 차집되거나 처리되지 않고 그대로 하천에 유입되고 있는 실정이다. 비점오염원은 불특정 오염원으로서 지표의 오염물질이나 합류식 하수관거의 하수가 강우에 의해 발생한 유출과 함께 하천으로 유입(CSOs)되어 우천 시에 하천을 오염시키는 가장 큰 원인이 되고 있으므로 이의 저감하기 위한 효과적인 비점오염원 관리방안이 요구된다. 본 연구에서는 대상유역인 부산광역시에 위치한 온천천 유역을 주요토구별 43개 유역으로 구분하여 SWMM(Storm Water Management Model)을 구축하였고 개별 토구에 Divider를 설치하여 일정 차집량을 초과하는 유량은 처리장으로 유입되는 것으로 모의하였다. 장치형 처리시설은 농도에 따라 일정효율을 가지고 처리시설의 임계유량을 초과하는 경우는 미처리되어 방류되는 것으로 가정하였으며 처리장으로 차집된 유량도 처리장의 시간최대 유량을 초과하는 유량은 간이처리 후 방류되는 것으로 가정하여 시나리오에 따라 모의하였다. 각 토구별로 처리시설을 설치한 경우의 처리효율과 차집비율을 증가시켜 처리장에서 일괄처리하는 경우의 처리효율을 차집비율별로 검토하여 최적의 차집비율을 검토하였다. 또한 오염원 관리측면의 면적당 축적부하량 저감과 발생량 관리측면의 토구의 차집비율 증가 및 토구에 대한 처리시설 설치비율에 따른 효율을 검토하여 처리효율, 오염원 저감 및 차집비율에 대한 상관관계를 도출하였다.

  • PDF

A Study on Improvement of Hydrologic Cycle by Selection of LID Technology Application Area -in Oncheon Stream Basin- (LID 기술 적용 지역 선정에 따른 물순환 개선 연구 -온천천 유역을 대상으로-)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • The frequency by water disaster in urban areas are increasing continuously due to climate change and urbanization. Countermeasures are being conducted to reduce the damage caused by water disasters. An analysis based on permeability, one of the parameters that affect runoff, is needed to predict quantitative runoff in urban watersheds and study runoff reduction. In this study, the SWAT model was simulated for the oncheon stream basin, a representative urban stream in Busan. The permeability map was prepared by calculating the CN values for each hydrologic response unit. Based on the permeability map prepared, EPA SWMM analyzed the effect of LID technology application on the water cycle in the basin for short-term rainfall events. The LID element technology applied to the oncheon stream basin was rooftop greening in the residential complex, and waterproof packaging was installed on the road. The land cover status of the land selected based on the permeability map and the application of LID technology reduced the outflow rate, peak flow rate, and outflow rate and increased the infiltration. Hence, LID technology has a positive effect on the water cycle in an urban basin.

Analysis of Distribution Characteristics of Flowrate and Water Quality in Tributary at Chungcheongnam-do (충청남도 지류하천의 유량 및 수질 분포특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Choi, Jeong-Ho;Cho, Byung-Wook;Kim, Hong-Su;Jeong, Woo-Hyeok;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.739-747
    • /
    • 2011
  • The major 81 tributaries in Chungcheongnam-do were monitored for flowrate and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. The value of flowrate in the tributaries at Nonsancheon catchment at the Geum-River watershed and Gokgyocheon, Muhancheon, Sapgyocheon at the Sapgyo-Reservoir watershed, which is located in the southern and northern area in Chungcheongnam-do, was relatively greater than the other watersheds. The concentration of water pollutants regardless of water quality parameters in Nonsancheon catchment at the Geum-River watershed, Gokgyocheon catchment at the Sapgyo-Reservoir watershed and the Anseongcheon watershed, which have a dense source of pollution, were higher than the other watersheds. However, 64 percent of the tributaries at the Geum-River watershed, 45 percent of tributaries at the Sapgyo-Reservoir watershed, 26 percent of tributaries at the Geum-River watershed all satisfied the Class II regulations in the Framework Act on Environment Policy, but all of the tributaries located in the Anseongcheon watershed exceeded the Class II regulations. Therefore, the policy for improving the water quality of the tributary in Chungcheongnam-do should be established in the following order: Anseongcheon, Seohae, Sapgyo-Reservoir watersheds. Consequently, the tributary catchment for improving water quality, which has a large flowrate and a high concentration of water pollutants, was selected at Ganggyeongcheon, Geumcheon, Nonsancheon, Seokseongcheon, Seungcheoncheon, Jeongancheon, Jeungsancheon (so far Geum-River watershed), Gokgyocheon, Namwoncheon, Maegokcheon, Muhancheon, Sapgyocheon Oncheoncheon, Cheonancheon (so far Sapgyo-Reservoir watershed), Gwangcheoncheon, Dangjincheon, Daecheoncheon, Dodangcheon, Waryongcheon, Cheongjicheon, Pangyocheon, Heungincheon (so far Seohae watershed), Dunpocheon, Seonghwancheon, Ipjangcheon (so far Anseongcheon watershed). The plans as installation of environmental facilities to reduce the source of pollution for improving the water quality of these tributary catchments should be urgently established and implemented.

Comparison of Runoff Models for Small River Basins (소하천 유역에서의 유출해석모형 비교)

  • 강인식
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.209-221
    • /
    • 1996
  • It may be difficult to make exact estimates of peak discharge or runoff depth of a flood and to establish the proper measurement for the flood protection since water stages or discharges have been rarely measured at small river basins in Korea. Three small catchments in the Su-Young river basin in Pusan were selected for the study areas. Various runoff parameters for the study areas were determined, and runoff analyses were performed using three different runoff models available in literatures; the storage function method, the discrete, linear, input-output model, and the linear reservoir model. The hydrographs calculated by three different methods showed good agreement with the observed flood hydrographs, indicating that the models selected are all capable of sucessfully modeling the flood events for small watersheds. The storage function method gave the best results in spite of its weakness that it could not be applicable to small floods, while the linear reservoir model was found to provide relatively good results with less parameters. The capabilities of simulating flood hydrographs were also evaluated based on the effective rainfall from the storage function parameters, the $\Phi$-index method, and the constant percentage method. For the On-Cheon stream watershed, the storage function parameters provided better estimates of effective rainfall for regenerating flood hydrographs than any others considered in the study. The $\Phi$-index method, however, resulted in better estimates of effective rainfall for the other two study areas.

  • PDF

Cost-Benefit Analysis for LID Installation in Flood Damage Basin (홍수 피해 유역의 LID 설치에 따른 비용 편익 분석)

  • Baek, Jong Seok;Kim, Baek Joong;Kim, Hyeong San;Lee, Sang Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.253-253
    • /
    • 2016
  • 여러 정부부처 및 지자체에서 도시지역 홍수 피해 및 비점오염원 저감 방안의 해법으로 LID 시설의 설치를 권장하고 있다. 하지만 LID 기술의 국내 도입 기간이 짧아 우리나라 환경에 맞는 LID 시공을 할 수 있는 업체가 한정적이고 시공경험도 많지 않아 시공 비용에 대한 경제성 분석이 어렵다. 이러한 문제점으로 인해 LID 설치 비용의 과대 인식과 실효성에 대한 불안감이 만연하여 시설 설치에 어려움을 겪고 있다. 이와 관련하여 GI&LID 연구단에서 LID 통합설계모듈 등의 모형 개발 연구가 활발히 진행중이나 이에 앞서 금번 연구에서는 SWMM 모형을 이용하여 분석을 수행하였고, 가시적인 비교가 용이하고 최근 가장 큰 피해를 가져왔던 2014년 홍수 사상을 대상으로 연구를 진행하였다. 본 연구에서는 도시내 급경사면이 많고 불투수면적율이 높아 유속이 빠르고 완경사로 변화되는 구간에 홍수 및 토석류가 집중되어 홍수피해에 취약한 부산시 온천천 유역을 대상으로 LID 시설을 모의 설치 및 시뮬레이션 하고 재해연보 상의 홍수피해 복구액과 비교하였다. 이를 통해 LID 시설 설치시 비용-편익을 분석하고 이점을 제시하여 추후 있을 LID 시공 및 관련 연구에 도움이 되고자 한다.

  • PDF

Development of data supplementation algorithm of sewerage system for urban inundation modelling (도시홍수 모의를 위한 하수관망 자료 보정 알고리즘 개발)

  • Lee, Seung Soo;An, Hyun UK
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.63-63
    • /
    • 2019
  • 최근 기후변화로 인한 도시지역 침수 피해를 저감하기 위한 다양한 연구가 수행되고 있으며 침수해석을 위한 기초자료로써 GIS 기반 하수관망 자료 활용의 중요성이 증대되고 있다. 그러나 이러한 하수관망 자료의 대부분은 지자체 수준의 행정단위에 의해 작성/관리 되고 있으며 하수관 망의 유지보수에 중점을 두어 제작되었기 때문에 침수해석을 위한 속성자료가 누락되어 있는 경우가 상당수 존재한다. 따라서 고유의 제작 목적과 침수해석이라는 활용 목적이 일치 하지 않아 속성 데이터 값이 존재하지 않거나 침수 모델링에 필요한 필수 정보가 누락되어 개별 연구자들이 별도의 보완작업을 수행한 후 침수해석에 활용하고 있는 실정이다. 이러한 개인연구자들의 주관적 판단에 의한 하수관망의 단순화 또는 보완작업은 상황에 따라 자료의 불확실성을 증대시키며 연구자의 숙련도와 배경지식에 따라 침수 해석 결과에 많은 영향을 미치고 있다. 따라서 GIS기반 하수관망 자료를 침수 모의에 활용 가능한 입력 자료로 변환 하는 경우 개별 연구자들의 주관적 개입이 최대한 배제된 형태의 자료를 만들기 위한 기본 알고리즘 개발이 시급한 상태이다. 본 연구에서는 서울시 사당역 인근 유역과 부산시 온천천 유역의 GIS 기반 하수관망 자료의 형식에 대해서 알아보고 누락 자료를 보완하기 위한 알고리즘을 개발하였다. 개발된 알고리즘을 활용하여 누락자료가 보완된 하수관망 자료는 향후 개별 연구자들의 주관적 판단을 배제하여 도시침수 해석 시 하수관망 자료의 불확실성을 최소화 하는데 기여할 수 있을 것으로 판단된다.

  • PDF