• Title/Summary/Keyword: 온위

Search Result 20, Processing Time 0.018 seconds

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

Atmospheric Boundary Layer Height Estimated based on 1.29 GHz Pulse Wave (1.29 GHz 펄스파로 산출한 대기경계층 고도)

  • Zi-Woo Seo;Byung-Hyuk Kwon;Kyung-Hun Lee;Geon-Myeong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1049-1056
    • /
    • 2023
  • The height of the atmospheric boundary layer indicates the peak developed when turbulence is generated by mixing heat and water vapor, and is generally determined through thermodynamic methods. Wind profilers produce atmospheric information from the scattering of signals sent into the atmosphere. A method for making the spectrum of turbulent components, turbulent kinetic energy dissipation rate, and refractive index structure coefficient was presented to determine the atmospheric boundary layer depth. Compared with the vertical distribution characteristics of potential temperature and specific humidity based on radiosonde data, the determination method of the atmospheric boundary layer height from wind profiler output was evaluated as very useful.

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

An analysis of Characteristics of Heavy Rainfall Events over Yeongdong Region Associated with Tropopause Folding (대류권계면 접힘에 의한 영동지방 집중호우사례의 특성분석)

  • Lee, Hye-Young;Ko, Hye-Young;Kim, Kyung-Eak;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.354-369
    • /
    • 2010
  • The synoptic and kinematic characteristics of a heavy rainfall that occurred in Gangneung region on 22 to 24 October 2006 were investigated using weather maps, infrared images, AWS observation data and NCEP global final analyses data. The total amount of rainfall observed in the region for the period was 316.5 mm, and the instanteneous maximum wind speed was $63.7m\;s^{-1}$. According to the analysis of weather maps, before the starting of the heavy rainfall, an extratropical low pressure system was developed in the middle region of the Korean Peninsula, and an inverted trough was formed in the northern region of the peninsula. In addition, a jet stream on the upper charts of 300 hPa was located over the Yellow Sea and the southern boundary of the peninsula. A cutoff low in the cyclonic shear side of the upper jet streak, which was linked to an anomaly of isentropic potential vorticity, was developed over the northwestern part of the peninsula. And there are analyzed potential vorticity and wind, time-height cross section of potential vorticity, vertical air motion, maximums of the divergence and convergence and vertical distribution of potential temperature in Gangneung region. The analyzed results of the synoptic conditions and kinematic processes strongly suggest that the tropopause folding made a significant role of initializing the heavy rainfall.

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018 (2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구)

  • Ahn, Bo-Young;Shim, Jae-Kwan;Kim, KyuRang;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.222-237
    • /
    • 2020
  • A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method (인공신경망 기법을 이용한 태풍 강도 및 진로 예측)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.294-304
    • /
    • 2009
  • A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.

A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model (GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구)

  • Mun, Da-Som;Kim, Min-Ji;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.395-408
    • /
    • 2021
  • In this study, we investigated the effects of wind speed and direction on building fires using GIS and a CFD model. We conducted numerical simulations for a fire event that occurred at an apartment in Ulsan on October 8, 2020. For realistic simulations, we used the profiles of wind speeds and directions and temperatures predicted by the local data assimilation and prediction system (LDAPS). First, using the realistic boundary conditions, we conducted two numerical simulations (a control run, CNTL, considered the building fire and the other assumed the same conditions as CNTL except for the building fire). Then, we conducted the additional four simulations with the same conditions as CNTL except for the inflow wind speeds and direction. When the ignition point was located on the windward of the building, strong updraft induced by the fire had a wide impact on the building roof and downwind region. The evacuation floor (15th floor) played a role to spread fire to the downwind wall of the building. The weaker the wind speed, the narrower fire spread around the ignition point, but the higher the flame above the building reaches. When the ignition point was located on the downwind wall of the building, the flame didn't spread to the upwind wall of the building. The results showed that wind speed and direction were important for the flow and temperature (or flame) distribution around a firing building.

Atmospheric Vertical Structure of Heavy Rainfall System during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간에 나타난 호우 시스템의 대기연직구조)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2012
  • The intensive observation (ProbeX-2010) with 6-hour launches of radiosonde was performed over Seoul metropolitan area (Dongducheon, Incheon Airport, and Yangpyeong) from 13 Aug. to 3 Sep. 2010. Five typical heavy rainfall patterns occurred consecutively which are squall line, stationary front, remote tropical cyclone (TC), tropical depression, and typhoon patterns. On 15 Aug. 03 KST, when squall line developed over Seoul metropolitan area, dry mid-level air was drawn over warm and moist low-level air, inducing strong convective instability. From 23 to 26 Aug and from 27 to 29 Aug. Rainfall event occurred influenced by stationary front and remote TC, respectively. During the stationary frontal rainy period, thermal instability was dominant in the beginning stage, but dynamic instability became strong in the latter stage. Especially, heavy rainfall occurred on 25 Aug. when southerly low level jet formed over the Yellow Sea. During the rainy period by the remote TC, thermal and dynamic instability sustained together. Especially, heavy rainfall event occurred on 29 Aug. when the tropical air with high equivalent potential temperature (>345 K) occupied the deep low-middle level. On 27 Aug. and 2 Sep. tropical depression and typhoon Kompasu affected Seoul metropolitan area, respectively. During these events, dynamic instability was very strong.

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020 (2020년 3월 18일-20일 영동지역 강풍 사례 연구)

  • Ahn, Bo-Yeong;Kim, Yoo-Jun;Kim, Baek-Jo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.479-495
    • /
    • 2021
  • This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.