• Title/Summary/Keyword: 온실 난방

Search Result 212, Processing Time 0.031 seconds

Analysis on the Effect of the Crown Heating System and Warm Nutrient Supply on Energy Usage in Greenhouse, Strawberry Growth and Production (관부 난방시스템과 온수 양액 공급이 온실 에너지 사용량, 딸기 생육 및 생산성에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.271-277
    • /
    • 2021
  • In this study, experiments of local heating on crown and supplying warm nutrient for energy saving and improving growth of 'Seolhyang' strawberry were conducted. The temperature of inside and crown in greenhouses which were control (space heating 8℃) and test (space heating 5℃+crown heating) was measured. In the control greenhouse, the average of temperature and humidity in December was 7.1℃, 87.2%, respectively. In the test greenhouse, the average of temperature and humidity in December was 5.7℃, 88.7%. The temperature of crown and inside the bed were 7.9℃, 10.8℃ in control, 9.3℃, 12.7℃ in test. During the test period, the total 16,847×103 kcal of energy was consumed in control greenhouse including space heating. In test greenhouse including space heating, crown heating and warm water supplying, total 9,475.7×103 kcal of energy was consumed. So, energy consumption in test was 43.8% less than in the control. The total yields of strawberry during test period were 412.7g/plant for test greenhouse and 393.3g/plant for control greenhouse respectively.

Comparison of Carbon Dioxide Emission Concentration according to the Age of Agricultural Heating Machine (농업용 난방기의 사용 연식에 따른 이산화탄소 배출농도 비교)

  • Na-Eun Kim;Dae-Hyun Kim;Yean-Jung Kim;Hyeon-Tae Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.190-196
    • /
    • 2023
  • This study was carried out to collect gas emitted from agricultural heaters using kerosene and to identify the emission concentration of carbon dioxide according to the age of agricultural heating machine. As a result of the linear regression analysis, the carbon dioxide emissions according to the year of agricultural heating machine are R2 = 0.84, which follows y = 26.99x+721.98. Distributed analysis was classified into three groups according to the age of agricultural heating machine. As a result of the distributed analysis, it was 2.196×10-13, which was smaller than the 0.05 probability set for the analysis, which means that there is a difference in at least one group. As a result, the age of the agriculture machine was divided into three groups and the difference between groups was tested. A statistical analysis result was derived that there was a difference in the emission concentration of carbon dioxide according to the age of agricultural heating machine. It is thought that it can be used to investigate greenhouse gas emissions by investigating the amount of carbon dioxide generated by agricultural heaters in the agricultural field of Korea.

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.

Energy Saving Effect of a Greenhouse with New Laborsaving Opening & Closing System of Thermal Tunnel Film (보온터널 개폐 생력화 장치를 이용한 온실의 난방에너지 절감 효과)

  • Ryou, Y.S.;Kang, G.C.;Kim, Y.J.;Paek, Y.;Jang, C.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.255-260
    • /
    • 2002
  • 일반적으로 온실의 효과적인 온도관리를 위해서는 단열효과가 우수한 보온재를 이용하거나 또는 난방공간의 체적을 최소화 할 수 있는 터널재배가 바람직하다. 지금까지는 딸기, 수박 등 키가 작은 작물에 한하여 보온터널재배가 이루어지고 있는 실정이나, 보온터널의 개폐를 인력에 의존하고 있기 때문에 노동력이 많이 들고, 개폐에 소요되는 시간도 상당한 비중을 차지하고 있다. (중략)

  • PDF

Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse (온실 내 잉여 태양열을 이용한 공기열원 히트펌프 성능향상)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Kang, Youn Ku;Kim, Chung Kil;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2013
  • A greenhouse heating system to improve heat pump performance using inside and outside air of greenhouse as a heat source selectively and cut $CO_2$ enrichment costs by delay of greenhouse ventilation was developed. In this system, thermal storage modes divided into inside circulation mode using surplus solar energy and outside circulation mode using outside air heat. The thermal storage modes were designed to be switched mutually according to inside greenhouse temperature and six temperature values were input to control the heat pump operating, thermal storage mode switching and greenhouse heating automatically. Operating characteristics of this system were tested in a plastic greenhouse of non-ventilation condition. The results of test showed that the inside circulation mode began at about 11:00 and lasted for about 210 minutes and inside greenhouse temperature was maintained between $20{\sim}28^{\circ}C$ in spite of non-ventilation. System heating COP of the inside circulation mode in the daytime was 3.35, which was 36% and 25% higher than that of the outside circulation modes in the nighttime and daytime respectively.

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능 실험)

  • 서원명;윤용철;권진근;박성우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.152-156
    • /
    • 2003
  • 우리나라 시설원예 면적은 최근 정체되는 기미를 보이긴 하지만, 아직도 시설원예 면적이 50,000ha 이상에 달하고 난방면적도 점점 증가되어 전체 면적 중에 난방면적이 차지하는 비율은 현재 12,300ha 정도인 24%이다. 난방기의 보급기의 보급도 매년 증가하여 '00년말 현재 127,560대 정도이다. 최근 국내 버섯 재배면적의 42% 차지하는 느타리(큰느타리 포함)버섯 재배사도 연중재배를 위하여 난방을 실시하는 농가가 점점 늘고 있고, 특히 새송이(큰느타리) 버섯 재배사의 대부분은 간이형 온실에서 냉난방 설비를 갖추어 연중재배를 하고 있다. (중략)

  • PDF

Analysis of Air Flow for Improving the Heat Storage Efficiency of the Solar-heated Greenhouse with Rock Bed Storage (자갈축열온실의 축열성능 향상을 위한 공기유동 분석)

  • 이석건;이종원;이현우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.195-198
    • /
    • 2003
  • 자갈축열 태양열온실은 주간에 일사로 데워진 온실 내부공기를 온실하부에 설치된 자갈축열층사이로 강제순환시켜 자갈에 에너지를 축열한다. 이러한 축열과 방열과정을 통하여 겨울철 야간에 난방시스템으로 이용하고, 여름철에는 냉방효과를 꾀하게 된다. 온실내 공기가 축열층을 통과하는 동안의 열전달은 강제대류열전달이며, 이 경우 축열층내의 열이동은 축열층내 공기와 자갈표면온도가 초기에는 열적으로 평형상태로 존재하다가 순환공기의 온도상승에 따라 열전달이 일어나게 된다. (중략)

  • PDF