• Title/Summary/Keyword: 온실 난방

Search Result 212, Processing Time 0.027 seconds

Status of Irrigation System for Greenhouses (온실의 관개 시스템 실태 조사)

  • 윤용철;서원명
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.3-6
    • /
    • 2002
  • 최근 시설재배에 대한 인식변화와 국민소득 향상과 함께 식품의 소비 형태도 변화되어 곡류의 소비량은 계속 감소하고 있는 반면, 신선한 과체류의 소비는 크게 증가하는 추세에 있고, 또 화훼류의 소비도 점점 증가하고 있다. 이러한 변화와 더불어 시설도 현대화, 대형화가 이루어지면서 시설내의 보온 및 환기와 관련한 냉ㆍ난방문제, 자동화와 관련한 구조적 문제, 광 투과량, 탄산가스 시비, 방제 등 여러 가지 측면에서 연구가 활발히 진행되고 있다. (중략)

  • PDF

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.

A Study on the Improvement of GHG Inventory in Agriculture and Forestry Categories of Energy Sector (에너지분야 농림업부문 온실가스 인벤토리 고도화 방안 연구)

  • Cheu, Sungmin;Moon, Jihye;Kim, Yeanjung;Sung, Jae-hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.294-304
    • /
    • 2019
  • Abstract Greenhouse Gas (GHG) emissions from agriculture and forestry sources in the energy sector have been estimated based on a top-down approach, which is an efficient way to estimate GHG emissions with the limited number of emission factors and activity data. On the other hand, for GHG abatement policies, more detailed information and data on GHG emissions are required. This study discusses how to improve the estimates of GHG emissions from the agricultural and forestry sources in the energy sector. To this end, this paper reviews the current estimation method of GHG emissions and presents three suggestions to enhance the current method. First, the development of country specific emission factors and corresponding activity data is proposed based on the 2006 IPCC Guidelines, National Greenhouse Gas Inventory Reports from other countries, and Domestic Statistics. Second, the uncertainty in CO2 emissions from agriculture in energy sector based on 2006 IPCC Guidelines is estimated, and ways of reducing the uncertainty in CO2 emissions are suggested. Finally, a potential way to reflect the GHG emissions from the use of renewable energy is suggested.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Comparative Analysis of Accumulated Temperature for Seasonal Heating Load Calculation in Greenhouses (온실의 기간난방부하 산정을 위한 난방적산온도 비교분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.192-198
    • /
    • 2014
  • To establish the design criteria for seasonal heating load calculation in greenhouses, standard weather data are required. However, they are being provided only at seven regions in Korea. So, instead of using standard weather data, in order to find the method to build design weather data for seasonal heating load calculation, heating degree-hour and heating degree-day were analyzed and compared by methods of fundamental equation, Mihara's equation and modified Mihara's equation using normal and thirty years from 1981 to 2010 hourly weather data provided by KMA and standard weather data provided by KSES. Average heating degree-hours calculated by fundamental equation using thirty years hourly weather data showed a good agreement with them using standard weather data. The 24 times of heating degree-day showed relatively big differences with heating degree-hour at the low setting temperature. Therefore, the heating degree-hour was considered more appropriate method to estimate the seasonal heating load. And to conclude, in regions which are not available standard weather data, we suggest that design weather data should be analyzed using thirty years hourly weather data. Average of heating degree-hours derived from every year hourly weather data during the whole period can be established as environmental design standards, and also minimum and maximum of them can be used as reference data for energy estimation.

Investigation and Greenhouse Heat Loss based on Areas and Weather Information (온실 열손실 분석용 기상정보 및 온실방위 조사 분석)

  • Kim, Young Hwa;Kang, Sukwon;Paek, Yee;Jang, Jae Kyung;Sung, Je Hoon;Kang, Yeon Koo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, eleven major coastal areas were selected and the climate environment and the greenhouse direction were analyzed. This research investigates the greenhouse heat loss according to the wind environment at target areas. The target areas were selected based on heated greenhouse cultivation area and wind environment standard. Temperature, wind speed, and wind direction among weather data for 30 years were collected and analyzed. The data were divided into the minimum, average, and maximum temperatures and the Meteorological Agency criteria applied to the weather and wind direction criteria. Data were collected in the range of $0{\sim}180^{\circ}$ considering the symmetry of the shape of the greenhouse. In addition, the wind direction is different for each region and the applied wind direction can be different when referring to the longitudinal direction of the greenhouse and the data are collected in the range of $0{\sim}90^{\circ}$. The results of this study are expected to be used to calculate the heating load of greenhouse installed in places wind speed high.

Implementation of Greenhouse Environmental Control Systems using Intelligence (지능을 이용한 온실 제어 시스템)

  • Yang, J.;Chung, C.D.;Hong, You-Sik;Ahn, B.I;Hwang, S.I.;Choi, Y.H.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.29-37
    • /
    • 2012
  • An experiment for an optimized automatic greenhouse environment in a flower farming greenhouse by building a ubiquitous sensor network with various sensors was conducted and the results were evaluated. And various culturing environmental information and data in the greenhouse were collected and analyzed. Then, the greenhouse was designed to maintain the best culturing environment on the basis of existing recommended optimized figures. By measuring the growth of the crops in the greenhouse, A system which controls facilities in the greenhouse to maintain the best culturing environment in accordance with change in the environment was analyzed.Computer simulation result proced that we discovered that controlling the facilities and the artificial light source increased production, enhanced quality, reduced labor and heating cost immensely. The experiment has proved that the u-flower farming system can maximize the income of farm families by sending warning messages to users of this system when weather suddenly changes so that users may cope with such changes and maintain the best culturing environment.

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

An Analysis on Effects of Passive Heating of Low Energy House Using Heat in Greenhouse (온실의 열을 이용한 저에너지하우스의 패시브 난방 효과 분석)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.103-109
    • /
    • 2016
  • Purpose: In Korea, to reduce greenhouse gas emissions, energy performance standard of buildings is being reinforced with goals of Passive House until 2017 and Zero Energy House until 2025 in order to reduce emissions from buildings which constitute a quarter of greenhouse gas emissions. In order to achieve the target of Zero Energy House, it is certainly necessary to develop renewable energy that can replace cooling and heating energy occupying a significant amount of building energy consumption after increasing the energy performance firstly. Method: In this study, effects of heat in greenhouse heated by solar heating on indoor heating were analyzed by constructing a greenhouse in front of the Low Energy Building. Result: As a result, indoor temperature was increased by peak average $27.8^{\circ}C$, peak average $6.8^{\circ}C$ was increased from when heat in greenhouse has not been used for heating and indoor surface temperature was increased by average $5.1^{\circ}C$. It shows it can be possible to use heat in greenhouse for heating, if the heating effects can be same as this experimental result because Energy Saving-Type buildings such as Low Energy House or Passive House keep from 18 to $20^{\circ}C$ in winter. Therefore, even if energy supply is cut off by disasters and other reasons, cooling and heating can be possible for some time.

Greenhouse Heating Characteristics of Heat Pump-Latent Heat Storage System (열펌프-잠열축열 시스템의 온실 난방 특성 연구)

  • 강연구;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.379-384
    • /
    • 2000
  • In order to use the natural thermal energy as much as possible for greenhouse heating, the air-air heat pump system involved PCM(phase change material) latent heat storage system was composed, and three types of greenhouse heating system(greenhouse system, greenhouse-PCM latent heat storage system, greenhouse-PCM latent heat storage-heat pump system) were recomposed from the greenhouse heating units to analyze the heating characteristics. The results could be concluded as follows; 1) In the greenhouse heated by the heat pump under the solar radiation of 406.39W/$m^2$, the maximum PCM temperature in the latent heat storage system was 24$^{\circ}C$ and the accumulated thermal energy stored in PCM mass of 816kg during the daytime was 100,320kJ. In the greenhouse without heat pump under the maximum solar radiation of 452.83W/$m^2$, the maximum PCM temperature in the latent heat storage system was 22$^{\circ}C$ and the accumulated thermal energy stored during the daytime was 52.250kJ. 2) In the greenhouse-PCM system without heat pump the heat stored in soil layers from the surface to 30cm of the soil depth was 450㎉/$m^2$. 3) In all of the greenhouse heating systems, the difference between the air temperature in greenhouse and the ambient temperature was about 20~23$^{\circ}C$ in the daytime. In the greenhouse without heat pump and PCM latent heat storage system the difference between the ambient temperature and the air temperature in the greenhouse was about 6~7$^{\circ}C$ in the nighttime, in the greenhouse with only PCM latent heat storage system the temperature difference about 7~13$^{\circ}C$ in the nighttime and in the greenhouse with the heat pump and PCM latent heat storage system about 9~14$^{\circ}C$ in the nighttime.

  • PDF