• Title/Summary/Keyword: 온실가스원단위

Search Result 38, Processing Time 0.029 seconds

Greenhouse Gas Reduction Scenario from LEAP Model Application to a University Campus-For Hanyang University Ansan Campus (LEAP 모델 적용을 통한 대학단위 온실가스 감축안 도출 - 한양대학교 안산캠퍼스 대상으로)

  • Park, Hyo-Jeong;Jung, Hye-Jin;Yi, Seung-Muk;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.280-287
    • /
    • 2012
  • The sources of greenhouse gases (GHG) at Hanyang University Ansan campus, including direct sources, indirect sources, and others, were investigated in order to establish the GHG inventory. Emission of GHG was calculated with the energy use from each source from 2007 and 2009. The indirect emission (56.7%) due to the electricity significantly contributed to total GHG emission. The scenario for the GHG reduction was designed for both campus administration and members. The reduction potential of GHG was simulated from 2007 to 2020 using Long-range Energy Alternatives Planning (LEAP) model. In case of GHG reduction scenario by campus administration, the GHG can be reduced by 63.34 ton $CO_{2eq}/yr$ for stationary combustion in the direct source, by 221.1 ton $CO_{2eq}/yr$ for mobile combustion in the direct source, and by 4,637.34 ton $CO_{2eq}/yr$ for lighting in the indirect source, compared to 2020 Business As Usual (BAU). In case of GHG reduction action scenario by campus members, the reduction potential of GHG was 1293.76 ton $CO_{2eq}/yr$. Overall, the total GHG emissions in 2020 by the both scenarios can be decreased by 24% compared to 2020 BAU.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

Development of Greenhouse Gas (GHG) Emissions Inventory and Evaluation of GHG Reduction Plans of Kangwon National University (대학의 온실가스 인벤토리 구축 및 감축잠재량 평가 - 강원대학교를 중심으로)

  • Park, Sang-Young;Han, Young-Ji;Oh, A-Ram;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2012
  • Greenhouse gases (GHGs) emissions from Kangwon National University was estimated to be 21,054 ton $CO_2$-eq in 2009, which was approximately 7% higher than that in 2005. Emissions from electricity usage in Scope 2 contributed to the upward annual trend of GHG emissions, comprising about 54.3% of the total GHG emissions. On the other hand, GHG emissions from Scope 1 and Scope 3 contributed approximately 25.3% and 20.4%, respectively. Various GHG reduction plans were also introduced and evaluated in this study. Among three reduction plans including LED substitution, improvement of transportation efficiency, and green campus action plan, the green campus action plan derived the most significant GHG reduction of 5.3% of total emissions. Estimated total reduced GHG emission was $1,570ton\;CO_2-eq\;yr^{-1}$ with all three reduction plans.

An Analysis of Local Quantity of Carbon Absorption, Fixation and Emission by Using GIS

  • Kim, Hyeon-Tae;Moon, Byeong-Eun;Choi, Eun-Gyu;Kim, Chi-Ho;Ryou, Young-Sun;Kim, Jong-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • Due to increasing greenhouse gas emissions, global warming and abnormal weather phenomena it has become important on a national level to keep a count of greenhouse gases being emitted. We want to take advantage of any selected area, as the basic data for the calculation of greenhouse gas emissions, Forest and Grassland, Paddy fields, and Fields(crops), Greenhouse(crops), Pig farm, Cattle farm, Farm household(populations, agricultural machinery) and Vehicle, the basic building blocks shots with a small amount of per-unit basis, the statistics calculated based on regional carbon emissions through the literature and experimental. Carbon absorption 772,960 ton C/year, amount of fixation 487,477 ton C/year, amount of emission 1,112,607 ton C/year were noted in Gimje-si, and amount of carbon absorption 55,559 ton C/year, amount of fixation 25,864 ton C/year, amount of emissions 58,355 ton C/year in Gongdeok-myeon, respectively. The carbon absorption at Hwangsan-ri is 25,107 ton C/year, fixation 4,301 ton C/year, and emission 20,330 ton C/year respectively. We were able to estimate the amount of carbon according to the specific characteristics of each unit village, then expanding it to a large-scale and comparative analysis, therefore we were able to obtain basic data on the national levels of carbon absorption.

Estimation of greenhouse gas emissions from the landfill sector with the application of the 2006 IPCC guidelines and the change factors analysis (2006 IPCC 가이드라인 적용에 따른 폐기물 매립 부문의 온실가스 배출량 산정 및 변화 요인 분석)

  • Kim, Ran-Hui;Park, Jin-Kyu;Song, Sang-Hoon;Park, Ok-Yun;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.37-51
    • /
    • 2020
  • Following the Paris Agreement adopted at the end of 2015, global stock-taking has been planned to be carried out on a 5-year basis from 2023, and it is mandatory to report on national GHG inventory and progress toward achieving greenhouse gas reduction targets. To prepare for this, it is important to improve the reliability of estimation of the greenhouse gas emission, identify the characteristics of each greenhouse gas emission source, and manage the amount of emissions. As such, this study compared and analyzed the amount of emissions from the landfill sector using the 2000 GPG, the 2006 IPCC Guidelines, and the 2019 Refinement estimation method. As a result, in comparison to 2016, there were 2,287 Gg CO2_eq. in scenario 1, 1,870 Gg CO2_eq. in scenario 2-1, 10,886 Gg CO2_eq. in scenario 2-2, 10,629 Gg CO2_eq. in scenario 2-3, and 12,468 Gg CO2_eq. in scenario 3. Thus, when the 2006 IPCC Guidelines were applied with respect to 2000 GPG, it was revealed that greenhouse gas emissions have increased. Such difference in the emission changes was due to the changes in the calculation method and the emission factor values applied. Therefore, it is urgent to develop national-specific values of the emission factor based on characteristics of greenhouse gas emission in Korea.

An Empirical Analysis of the Effect of Energy Saving Investment on the Improvement of Energy Intensity in Korean Manufacturing (한국 제조업에 대한 에너지절약 투자의 에너지 원단위 개선효과 분석)

  • Park, Changsuh;Yoo, Dongheon
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.485-510
    • /
    • 2007
  • The purpose of this paper is to empirically analyze the economic effect of energy saving investment on the improvement of energy intensity. The data used in this paper are panel data, both time-series and cross-section data. In addition, eight manufacturing sectors has been divided into two groups: massive energy consuming (four industries) and non-massive energy consuming (four industries) ones and the time period of analysis is from 1982 to 2004. According to the empirical results, firstly, energy saving investment has a negative relationship with energy intensity, however, its effect is not high in terms of absolute volume of energy consuming. Secondly, in improving energy intensity of energy saving investment, its elasticity IS higher in non-massive energy consuming sector compared it with massive energy consuming sector. Thirdly, automation investment is also playing an important role in energy conservation. The elasticities of automation investment to energy intensity are larger than those of energy saving investment. In terms of the reduction of greenhouse gas per investment unit cost, however, energy saving investment has larger effect than automation investment.

  • PDF

A Study on Evaluating the Effectiveness of Voluntary Agreement Policy (자발적협약제도 시행효과 계량에 관한 연구)

  • Cho, Ki-Seon;Lim, Do-Sang;Rhee, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.382-383
    • /
    • 2006
  • 본 논문은 에너지절약 및 온실가스 배출감소를 목적으로 시행하고 있는 에너지절약정책 중 산업체 자발적협약(Voluntary Agreement)제도의 정책효과를 계량화하기 위한 접근방법을 제시한다. 시책 추진효과의 계량은 2단계 접근으로, 1단계에서 절감효과(에너지 절감 및 온실가스 저감)를 파악하고, 2단계에서 이를 가치화하는 과정으로 수행된다.

  • PDF

Analysis of Energy Consumption Pattern and Greenhouse Gas Emission in the Academic Facility (대학에서의 에너지 소비패턴 및 온실가스 배출현황 분석)

  • Kim, Jin-Sik;Lee, Kyoung-Bin;Lee, Im-Hack;Kim, Shin-Do
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.604-612
    • /
    • 2012
  • Self-management plan for GHG (Greenhouse Gas) reduction should be prepared in academic facilities, which occupy a large amount of energy consumption. In this study, a university was chosen as one of the major academic facilities and its energy consuming pattern and GHG emission were analyzed. The results have shown that annual $CO_2$ emission from university buildings was 10,452 ton-$CO_2$ (0.65 ton-$CO_2/m^2$), and dependent upon 78.0% electricity, 20.5% LNG and 1.5% oil, respectively as energy sources. According to more detail analysis by usage of energy consumption, appliances occupies 36.7% followed by gas heating (18.9%), lighting (18.6%), heating with electricity (12.5%), cooling with electricity (10.2%), transportation (1.5%), gas cooling (1.2%) and cooking (0.4%). Furthermore, annual $CO_2$ emissions per unit area and a student by electricity usage were evaluated to 51.30 kg-$CO_2/m^2$ and 981.86 kg-$CO_2$/capita, respectively and those by LNG usage were 14.61 kg-$CO_2/m^2$ and 241.01 kg-$CO_2$/capita.

A Study on the Greenhouse Gas Intensity of Building Groups and Regional in Korea (국내 에너지다소비건물의 용도별.지역별 온실가스 배출원단위분석 연구)

  • Lee, Chung-Kook;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.162-169
    • /
    • 2012
  • Our country set the mid-term reduction goal of greenhouse gases up to 2020 in accordance with Bali roadmap agreed in 2007 through the negotiation with UNFCCC in 2009 and specified the proper goal as by the Basic Act on Green Growth that went into effect at April, 2010. First of all the enlargement of green building construction has been suggested as a worldwide strategy to achieve the green house gas reduction. Building area is one of most important sectors for the countermeasure of climate change agreement and the achievement of national green house gas reduction goal and the need to reduce its green house gases has been increased accordingly. The objective of the study is to examine the status and characterization of mass energy consumption local governmental buildings' green house gas emissions depending on usage (hotel, school, apartment, hospital) through the green house gas emission source unit analysis. The result indicated that the energy source unit was proportional to green house gas source unit and hotel showed the highest green house gas emission source unit per open area of construction unit, followed by hospital, apartment, and then school. In case of apartment, green house gas emission source unit per open area of construction unit decreased as year went on. Meanwhile school building showed a striking increase in the annual energy source unit.